Skip to main content
Log in

Bifurcation Cascades and Self-Similarity of Periodic Orbits with Analytical Scaling Constants in Hénon–Heiles Type Potentials

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We investigate the isochronous bifurcations of the straight-line librating orbit in the Hénon–Heiles and related potentials. With increasing scaled energy e, they form a cascade of pitchfork bifurcations that cumulate at the critical saddle-point energy e=1. The stable and unstable orbits created at these bifurcations appear in two sequences whose self-similar properties possess an analytical scaling behavior. Different from the standard Feigenbaum scenario in area preserving two-dimensional maps, here the scaling constants α and β corresponding to the two spatial directions are identical and equal to the root of the scaling constant δ that describes the geometric progression of bifurcation energies en in the limit n→∞. The value of δ is given analytically in terms of the potential parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. C. Gutzwiller, J. Math. Phys. 12, 343 (1971).

    Google Scholar 

  2. M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer, New York, 1990).

    Google Scholar 

  3. V. M. Strutinsky, Nukleonika (Poland) 20, 679 (1975). V. M. Strutinsky and A. G. Magner, Sov. J. Part. Nucl. 7, 138 (1976). V. M. Strutinsky, A. G.Magner, S. R. Ofengenden, and T. Do% ssing, Z. Phys. A 283, 269 (1977).

    Google Scholar 

  4. M. Brack, R. K. Bhaduri, J. Law, and M. V. N. Murthy, Phys. Rev. Lett. 70, 568 (1993). M. Brack, R. K. Bhaduri, J. Law, Ch. Maier, and M. V. N. Murthy, Chaos 5, 317 (1995); ibid. (Erratum) 5, 707 (1995).

    Google Scholar 

  5. M. Brack, P. Meier, and K. Tanaka, J. Phys. A 32, 331 (1999).

    Google Scholar 

  6. S. M. Reimann, M. Persson, P. E. Lindelof, and M. Brack, Z. Phys. B 101, 377 (1996).

    Google Scholar 

  7. J. Blaschke and M. Brack, Europhys. Lett. 50, 294 (2000).

    Google Scholar 

  8. M. Brack, S. M. Reimann, and M. Sieber, Phys. Rev. Lett. 79, 1817 (1997). M. Brack, P. Meier, S. M. Reimann, and M. Sieber, in Similarities and Differences Between Atomic Nuclei and Clusters, Y. Abe et al., eds. (A.I.P., 1998), p. 17. M. Brack, M. Sieber, and S. M. Reimann, in Nobel Symposium on Quantum Chaos, K.-F. Berggren, ed., to appear in Physica Scripta (2001).

    Google Scholar 

  9. M. Brack and Ch. Amann, in Fission Dynamics of Atomic Clusters and Nuclei, D. Brink et al., eds. (World Scientific, Singapore, 2001).

    Google Scholar 

  10. M. Brack and R. K. Bhaduri, Semiclassical Physics, Frontiers in Physics, Vol. 96 (Addison_Wesley, Reading, 1997).

    Google Scholar 

  11. M. Hén and C. Heiles, Astr. J. 69, 73 (1964).

    Google Scholar 

  12. K. Tanaka and M. Brack, to be published.

  13. R. C. Churchill, G. Pecelli, and D. L. Rod, in Stochastic Behavior in Classical and Quan-tum Hamiltonian Systems, G. Casati and J. Ford, eds. (Springer, New York, 1979), p. 76.

    Google Scholar 

  14. K. T. R. Davies, T. E. Huston, and M. Baranger, Chaos 2, 215 (1992).

    Google Scholar 

  15. W. M. Vieira and A. M. Ozorio de Almeida, Physica D 90, 9 (1996).

    Google Scholar 

  16. M. Sieber, J. Phys. A 29, 4715 (1996). H. Schomerus and M. Sieber, J. Phys. A 30, 4537 (1997). M. Sieber and H. Schomerus, J. Phys. A 31, 165 (1998).

    Google Scholar 

  17. J. Main and G. Wunner, Phys. Rev. A 55, 1743 (1997).

    Google Scholar 

  18. H. Schomerus, Europhys. Lett. 38, 423 (1997). J. Phys. A 31, 4167 (1998).

    Google Scholar 

  19. A. Magner, S. N. Fedotkin, K. Arita, T. Misu, K. Matsuyanagi, T. Schachner, and M. Brack, Prog. Theor. Phys. (Japan) 102, 551 (1999).

    Google Scholar 

  20. A. Magner, S. N. Fedotkin, and M. Brack, work in progress.

  21. M. J. Feigenbaum, J. Stat. Phys. 19, 25 (1978); see also M. J. Feigenbaum, Physica D 7, 16 (1983).

    Google Scholar 

  22. T. C. Bountis, Physica D 3, 577 (1981).

    Google Scholar 

  23. J. M. Greene, R. S. McKay, F. Vivaldi, and M. J. Feigenbaum, Physica D 3, 468 (1981).

    Google Scholar 

  24. M. A. M. de Aguiar, C. P. Malta, M. Baranger, and K. T. R. Davies, Ann. Phys. (N.Y.) 180, 167 (1987).

    Google Scholar 

  25. J.-M. Mao and J. B. Delos, Phys. Rev. A 45, 1746 (1992).

    Google Scholar 

  26. M. Mehta and M. Brack, to be published.

  27. G. W. Hill, Acta Math. 8, 1 (1886).

    Google Scholar 

  28. W. Magnus and S. Winkler, Hill's Equation (Interscience, New York, 1966).

    Google Scholar 

  29. A. R. Edmonds, J. Phys. A 22, L673 (1989).

    Google Scholar 

  30. B. Barbanis, Astr. J. 71, 415 (1966).

    Google Scholar 

  31. M. Brack, S. C. Creagh, and J. Law, Phys. Rev. A 57, 788 (1998).

    Google Scholar 

  32. J. Main, G. Wiebusch, A. Holle, and K. H. Welge, Phys. Rev. Lett. 57, 2789 (1986).

    Google Scholar 

  33. M. Y. Sumetskii, Sov. Phys. JETP 56, 959 (1983).

    Google Scholar 

  34. J. Main, G. Wiebusch, A. Holle, and K. H. Welge, Z. Phys. D 6, 295 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brack, M. Bifurcation Cascades and Self-Similarity of Periodic Orbits with Analytical Scaling Constants in Hénon–Heiles Type Potentials. Foundations of Physics 31, 209–232 (2001). https://doi.org/10.1023/A:1017582218587

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017582218587

Keywords

Navigation