Skip to main content
Log in

The Inverse Gaussian Models: Analogues of Symmetry, Skewness and Kurtosis

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

The inverse Gaussian (IG) family is strikingly analogous to the Gaussian family in terms of having simple inference solutions, which use the familiar χ2, t and F distributions, for a variety of basic problems. Hence, the IG family, consisting of asymmetric distributions is widely used for modelling and analyzing nonnegative skew data. However, the process lacks measures of model appropriateness corresponding to \(\sqrt {\beta _1 } \) and β2, routinely employed in statistical analyses. We use known similarities between the two families to define a concept termed IG-symmetry, an analogue of the symmetry, and to develop IG-analogues δ1 and δ2 of \(\sqrt {\beta _1 } \) and β2, respectively. Interestingly, the asymptotic null distributions of the sample versions d 1, d 2 of δ1, δ2 are exactly the same as those of their normal counterparts \(\sqrt {b_1 } \) and b 2. Some applications are discussed, and the analogies between the two families, enhanced during this study are tabulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ang, A. H.-S. and Tang, W. H. (1975). Probability Concepts in Engineering Planning and Design, Vol. I, Wiley, New York.

    Google Scholar 

  • Balanda, K. P. and MacGillivray, H. L. (1988). Kurtosis: A critical review, Amer. Statist., 42, 111–119.

    Google Scholar 

  • Bartlett, M. S. (1937). Properties of sufficiency and statistical tests, Proceedings in Royal Statistical Society, A, 160, 268–282.

    Google Scholar 

  • Bickel, P. J. and Lehmann, E. L. (1975). Descriptive statistics for nonparametric models. II: Location, Ann. Statist., 3, 1045–1069.

    Google Scholar 

  • Bowman, K. O. and Shenton, L. R. (1975). Omnibus test contours for departures from normality based on √b1 and b 2, Biometrika, 62, 243–250.

    Google Scholar 

  • Box, G. E. P. (1953). Non normality and tests on variances, Biometrika, 40, 318–335.

    Google Scholar 

  • Chhikara, R. S. and Folks, J. L. (1989). The Inverse Gaussian Distribution, Marcel Dekker, New York.

    Google Scholar 

  • Cramér, H. (1946). Mathematical Methods of Statistics, Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • D'Agostino, R. B. and Stephens, M. A. (1986). Goodness-of-fit Techniques, Marcel Dekker, New York.

    Google Scholar 

  • Dugué, D. (1941). Sur un nouveau type de courbe de fréquence, Comptes Rendes de l'Academie des Sciences, 213, 634–635.

    Google Scholar 

  • Efron, B. (1982). The jackknife, the bootstrap and other resampling plans, CBMS Regional Conf. Ser. in Appl. Math., 38.

  • Efron, B. and Olshen, R. A. (1978). How broad is the class of normal scale mixtures?, Ann. Statist., 6, 1159–1164.

    Google Scholar 

  • Elderton, W. P. and Johnson, N. L. (1969). Systems of Frequency Curves, Cambridge University Press, London-New York.

    Google Scholar 

  • Folks, J. L. and Chhikara, R. S. (1978). The Inverse Gaussian distribution and its Statistical Application-A Review, J. Roy. Statist. Soc. Ser. B, 40, 263–289.

    Google Scholar 

  • Freimer, M., Mudholkar, G. S., Kollia, G. and Lin, C. T. (1988). A study of the generalized Tukey lambda family, Comm. Statist. Theory Methods, 17(10), 3547–3567.

    Google Scholar 

  • Heyde, C. C. (1963). On a property of the lognormal distribution, J. Roy. Statist. Soc., Ser. B, 25, 392–393.

    Google Scholar 

  • Huberman, B. A., Pirolli, P. L. T., Pitkow, J. E. and Lukose R. M. (1998). Strong regularities in World Wide Web Surfing, Science, 280, 95–97.

    Google Scholar 

  • Iyengar, S. and Patwardhan, G. (1988). Recent developments in the inverse Gaussian distribution, Handbook of Statist. (eds. P. R. Krishnaiah and C. R. Rao), 7, 479–480.

  • Johnson, N. L., Kotz, S. and Balakrishnan, N. (1994). Continuous Univariate Distributions, 2nd ed., Wiley, New York.

    Google Scholar 

  • Kagan, A. M., Linnik, Y. and Rao, C. R. (1973). Characterization Problems in Mathematical Statistics, Wiley, New York.

    Google Scholar 

  • Keilson, J. and Steutel, F. W. (1974). Mixtures of distributions: Moment inequality measures of exponentiality and normality, Ann. Probab., 2, 112–130.

    Google Scholar 

  • Kendall, M. G. and Stuart, A. (1969). Kendall's Advanced Theory of Statistics, Vol. I, Carles Griffin, London.

    Google Scholar 

  • Khatri, C. G. (1962). A characterization of the inverse Gaussian distribution, Ann. Math. Statist., 33, 800–803.

    Google Scholar 

  • Lin, C. C. and Mudholkar, G. S. (1980). A simple test for normality against asymmetric alternatives, Biometrika, 67, 455–461.

    Google Scholar 

  • Lukacs, E. and Laha, R. G. (1964). Applications of Characteristic Functions, Hafner, New York.

    Google Scholar 

  • MacGillivray, H. L. (1986). Skewness and asymmetry: Measures and ordering, Ann. Statist., 14, 994–1011.

    Google Scholar 

  • Mooley, D. A. (1973). Gamma distribution probability model for Asian summer monsoon monthly rainfall, Monthly Weather Review, 101, 160–176.

    Google Scholar 

  • Mudholkar, G. S. and Hutson, A. (1996). The exponentiated Weibull family: Some properties and a flood data application, Comm. Statist.-Theory Methods, 25(12), 3059–3083.

    Google Scholar 

  • Mudholkar, G. S. and Hutson, A. (1998). LQ-moments: Analogs of L-moments, J. Statist. Plann. Inference, 71, 191–208.

    Google Scholar 

  • Mudholkar, A. Mudholkar, G. S. and Srivastava, D. K. (1991). A construction and appraisal of pooled trimmed-t statistics, Comm. Statist. Ser. A, 20, 1345–1359.

    Google Scholar 

  • Mudholkar, G. S., Marchetti, C., and Lin, C. T. (2001a). Independence characterization and testing normality against restricted skewness and kurtosis alternatives, J. Statist. Plann. Inference (to appear).

  • Mudholkar, G. S., Natarajan, R. and Chaubey, Y. P. (2001b). Independence characterization and inverse Gaussian goodness-of-fit composite hypothesis, Sankhyā, Ser. B (to appear).

  • Ord, J. K. (1972). Families of Frequency Distributions, Hafner, New York.

    Google Scholar 

  • Pearson, K. R. (1905). Skew variation, a rejoinder, Biometrika, 4, 169–212.

    Google Scholar 

  • Perricchi, L. R. and Rodriguez-Iturbe, I. (1985). On the statistical analysis of floods, The ISI Centenary volume (eds. A. C. Atkinson and S. E. Feinberg), 511–541, Springer, New York.

    Google Scholar 

  • Schrödinger, E. (1915). Zur theorie der fall-und steigversuche an teilchenn mit Brownsche bewegung, Physikalische Zeitschrift, 16, 289–295.

    Google Scholar 

  • Serfling, R. J. (1980). Approximation Thorems of Mathematical Statistics, Wiley, New York.

    Google Scholar 

  • Seshadri, V. (1993). The Inverse Gaussian distribution: A case study in exponential families, Clarendon Press, Oxford.

    Google Scholar 

  • Seshadri, V. (1997). Halphen's Law in Encyclopedia of Statistical Science, Update Vol. 1, 302–306, Wiley, New York.

    Google Scholar 

  • Seshadri, V. (1999). The Inverse Gaussian distribution-Statistical Theory and Applications, Lecture Notes in Statist., No. 137, Springer, New York.

    Google Scholar 

  • Shohat, J. A. and Tamarkin, J. D. (1943). The Problem of Moments, American Mathematical Society, New York.

    Google Scholar 

  • Smithsonian Institution, Miscellaneous Collections (1927). World Weather Records, 79, Washington, D. C., p. 323.

    Google Scholar 

  • Smithsonian Institution, Miscellaneous Collections (1934). World Weather Records, 1921–1930, 90, Washington, D. C., p. 146.

    Google Scholar 

  • Smithsonian Institution, Miscellaneous Collections (1947). World Weather Records, 1931–1940, 105, Washington, D. C., p. 145.

    Google Scholar 

  • Smoluchowsky, M. V. (1915). Notizüber die Berechning der Brownshen Molkular-bewegung bei des Ehrenhaft-millikanchen Versuchsanordnung, Physikalische Zeitschrift, 16, 318–321.

    Google Scholar 

  • Stieltjes, T. J. (1894). Recherches sur les fractions continues, Annales de la Faculté des Sciences de Toulouse, 8, 1–122.

    Google Scholar 

  • Tweedie, M. C. K. (1945). Inverse statistical variates, Nature, 155, p. 453.

    Google Scholar 

  • U. S. Department of Commerce, Weather Bureau (1959). World Weather Records, 1941–1950, Washington D. C., p. 398.

  • U. S. Department of Commerce, Weather Bureau (1967). World Weather Records, 1951–1960, 4, Asia, Washington D. C., p. 345.

    Google Scholar 

  • U. S. Water Resources Council, Washington, Hydrology Comittee (1977). Guidelines for determining flood flow frequency, United States. Water Resources Council, Washington D. C.

    Google Scholar 

  • Wald, A. (1947). Sequential Analysis, Wiley, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Mudholkar, G.S., Natarajan, R. The Inverse Gaussian Models: Analogues of Symmetry, Skewness and Kurtosis. Annals of the Institute of Statistical Mathematics 54, 138–154 (2002). https://doi.org/10.1023/A:1016173923461

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016173923461

Navigation