Skip to main content
Log in

Generalized Pseudo-Likelihood Estimates for Markov Random Fields on Lattice

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

In this paper we generalize Besag's pseudo-likelihood function for spatial statistical models on a region of a lattice. The correspondingly defined maximum generalized pseudo-likelihood estimates (MGPLEs) are natural extensions of Besag's maximum pseudo-likelihood estimate (MPLE). The MGPLEs connect the MPLE and the maximum likelihood estimate. We carry out experimental calculations of the MGPLEs for spatial processes on the lattice. These simulation results clearly show better performances of the MGPLEs than the MPLE, and the performances of differently defined MGPLEs are compared. These are also illustrated by the application to two real data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews, D. F. and Herzberg, A. M. (1985). Data, Springer, New York.

    Google Scholar 

  • Besag, J. E. (1974). Spatial interaction and the statistical analysis of lattice systems (with discussion), J. Roy. Statist. Soc. Ser. B, 36, 192–236.

    Google Scholar 

  • Besag, J. E. (1975). Statistical analysis of non-lattice data, The Statistician, 24, 179–195.

    Google Scholar 

  • Besag, J. E. (1977). Efficiency of pseudolikelihood estimation for simple Gaussian fields, Biometrika, 64, 616–618.

    Google Scholar 

  • Besag, J. E. (1986). On the statistical analysis of dirty pictures (with discussion). J. Roy. Statist. Soc. Ser. B, 48, 259–302.

    Google Scholar 

  • Besag, J. E. and Moran, P. A. P. (1975). On the estimation and testing of spatial interaction in Gaussian lattice processes, Biometrika, 62, 555–562.

    Google Scholar 

  • Comets, F. (1992). On consistency of a class of estimators for exponential families of Markov random fields on the lattice, Ann. Statist., 20, 455–468.

    Google Scholar 

  • Cressie, N. A. C. (1993). Statistics for Spatial Data, Wiley, New York.

    Google Scholar 

  • Diggle, P. J., Fiksel, T., Grabarnik, P., Ogata, Y., Stoyan, D. and Tanemura, M. (1994). On parameter estimation for pairwise interaction point processes, International Statistical Review, 62, 99–117.

    Google Scholar 

  • Feynman, R. P. (1972). Statistical Mechanics: A Set of Lectures, Benjamin/Cummings, Reading, Massachusetts.

    Google Scholar 

  • Geyer, C. J. (1991). Markov chain Monte Carlo maximum likelihood, Computing Science and Statistics: 23rd Symposium on the Interface, (ed. E. M. Keramidas), 156–163, Interface Foundation of North America, Fairfax Station.

    Google Scholar 

  • Geyer, C. J. and Thompson, E. A. (1992). Constrained Monte Carlo maximum likelihood for dependent data, J. Roy. Statist. Soc. Ser. B, 54, 657–699.

    Google Scholar 

  • Goulard, M., Särkkä, A. and Grabarnik, P. (1996). Parameter estimation for marked Gibbs point processes through the maximum pseudolikelihood method, Scandinavian Journal of Statistics, 23, 365–379.

    Google Scholar 

  • Guyon, X. (1995). Random Fields on a Network: Modeling, Statistics and Applications, Springer, New York.

    Google Scholar 

  • Guyon, X. and Künsch, H. R. (1992). Asymptotic comparison of estimators in the Ising model, Stochastic Models, Statistical Methods, and Algorithms in Image Analysis, Lecture Notes in Statist., 74, 177–198, Springer, Berlin.

    Google Scholar 

  • Huang, F. and Ogata, Y. (1999). Improvements of the maximum pseudo-likelihood estimators in various spatial statistical models, J. Comput. Graph. Statist., 8, 510–530.

    Google Scholar 

  • Huang, F. and Ogata, Y. (2001). Comparison of two methods for calculating the partition functions of various spatial statistical models, Australian and New Zealand Journal of Statistics, 41, 47–65.

    Google Scholar 

  • Huber, P. J. (1964). Robust estimation of a location parameter, Ann. Math. Statist., 35, 73–101.

    Google Scholar 

  • Huber, P. J. (1967). The behaviour of maximum likelihood estimates under nonstandard conditions, Proc. 5th Berkeley Symp. on Math. Statist. Prob., 1, 221–233.

    Google Scholar 

  • Ishiguro, M. and Akaike, H. (1989). DALL: Davidon's algorithm for log likelihood maximization —A FORTRAN subroutine for statistical model builders, Comput. Sci. Monographs, 25, The Institute of Statistical Mathematics, Tokyo.

    Google Scholar 

  • Jensen, J. L. and Künsch, H. R. (1994). On asymptotic normality of pseudo likelihood estimates for pairwise interaction processes, Ann. Inst. Statist. Math., 46, 475–486.

    Google Scholar 

  • Jensen, J. L. and Møller, J. (1991). Pseudolikelihood for exponential family models of spatial point processes, Ann. Appl. Probab., 1, 445–461.

    Google Scholar 

  • Mase, S. (1995). Consistency of the maximum pseudo-likelihood estimator of continuous state space Gibbsian processes, Ann. Appl. Probab., 5, 603–612.

    Google Scholar 

  • Mercer, W. B. and Hall, A. D. (1911). The experimental error of field trials, Journal of Agriculture Science, 4, 107–132.

    Google Scholar 

  • Moyeed, R. A. and Baddeley, A. J. (1991). Stochastic approximation of the MLE for a spatial point pattern, Scandinavian Journal of Statistics, 18, 39–50.

    Google Scholar 

  • Ogata, Y. (1980). Maximum likelihood estimates of incorrect Markov models for time series and the derivation of AIC, J. Appl. Probab., 17, 59–72.

    Google Scholar 

  • Onsager, L. (1944). Crystal statistics I, Physical Review, 65, 117–149.

    Google Scholar 

  • Penttinen, A. (1984). Modelling interaction in spatial point patterns: Parameter estimation by the maximum likelihood method, Jyvaskyla Studies in Computer Science, Economics and Statistics, 7.

  • Pickard, D. K. (1987). Inference for discrete Markov fields: The simplest nontrivial case, J. Amer. Statist. Assoc., 82, 90–96.

    Google Scholar 

  • Seymour, L. and Ji, C. (1996). Approximate Bayes model selection procedures for Gibbs-Markov random fields, J. Statist. Plann. Inference, 51, 75–97.

    Google Scholar 

  • Wiebe, G. A. (1935). Variation and correlation among 1500 wheat nursery plots, Journal of Agriculture Research, 50, 331–357.

    Google Scholar 

  • Younes, L. (1988). Estimation and annealing for Gibbsian fields, Ann. Inst. H. Poincaré Probab. Statist., 24, 269–294.

    Google Scholar 

  • Younes, L. (1991). Maximum likelihood estimation for Gibbs fields, Spatial Statistics and Imaging (ed. A. Possolo), Lecture Notes-Monograph Series, Vol. 20, 403–426 Institute of Mathematical Statistics, Hayward, California.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Huang, F., Ogata, Y. Generalized Pseudo-Likelihood Estimates for Markov Random Fields on Lattice. Annals of the Institute of Statistical Mathematics 54, 1–18 (2002). https://doi.org/10.1023/A:1016170102988

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016170102988

Navigation