Skip to main content
Log in

Computing Estimates in the Proportional Odds Model

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

The semiparametric proportional odds model for survival data is useful when mortality rates of different groups converge over time. However, fitting the model by maximum likelihood proves computationally cumbersome for large datasets because the number of parameters exceeds the number of uncensored observations. We present here an alternative to the standard Newton-Raphson method of maximum likelihood estimation. Our algorithm, an example of a minorization-maximization (MM) algorithm, is guaranteed to converge to the maximum likelihood estimate whenever it exists. For large problems, both the algorithm and its quasi-Newton accelerated counterpart outperform Newton-Raphson by more than two orders of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Becker, M. P., Yang, I. and Lange, K. (1997). EM algorithms without missing data, Statistical Methods in Medical Research, 6, 38–54.

    Google Scholar 

  • Bennett, S. (1983). Analysis of survival data by the proportional odds model, Statistics in Medicine, 2, 273–277.

    Google Scholar 

  • Cheng, S. C., Wei, L. J. and Ying, Z. (1995). Analysis of transformation models with censored data, Biometrika, 82, 835–845.

    Google Scholar 

  • Conn, A. R., Gould, I. M. and Toint, P. L. (1991). Convergence of quasi-Newton matrices generated by the symmetric rank one update, Math. Programming, 50, 177–195.

    Google Scholar 

  • Cox, D. R. (1972). Regression models and life tables (with discussion), J. Roy. Statist. Soc. Ser. B, 34, 187–220.

    Google Scholar 

  • Davidon, W. C. (1991). Variable metric methods for minimization, SIAM J. Optim, 1, 1–17.

    Google Scholar 

  • de Leeuw, J. (1994). Block-relaxation algorithms in statistics, Information Systems and Data Analysis (eds. H. H. Bock, W. Lenski and M. M. Richer), 308–325, Springer, Berlin.

    Google Scholar 

  • Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm, J. Roy. Statist. Soc. Ser. B, 39, 1–38.

    Google Scholar 

  • Gay, D. M. (1981). Computing optimal locally constrained Steps, SIAM J. Sci. Statist. Comput., 2, 186–197.

    Google Scholar 

  • Heiser, W. J. (1995). Convergent computation by iterative majorization, Recent Advances in Descriptive Multivariate Analysis (ed. W. J. Krzanowski), 157–189, Oxford University Press, New York.

    Google Scholar 

  • Hunter, D. R. and Lange, K. (2000). Rejoinder to discussion of optimization transfer using surrogate objective functions, J. Comput. Graph. Statist., 9, 52–59.

    Google Scholar 

  • Jamshidian, M. and Jennrich, R. I. (1997). Quasi-Newton acceleration of the EM algorithm, J. Roy. Statist. Soc. Ser. B, 59, 569–587.

    Google Scholar 

  • Khalfan, H. F., Byrd, R. H. and Schnabel, R. B. (1993). A theoretical and experimental study of the symmetric rank one update, SIAM J. Optim., 3, 1–24.

    Google Scholar 

  • Lange, K. (1995). A gradient algorithm locally equivalent to the EM algorithm, J. Roy. Statist. Soc. Ser. B, 57, 425–437.

    Google Scholar 

  • Lange, K., Hunter, D. R. and Yang, I. (2000). Optimization transfer algorithms using surrogate objective functions (with discussion), J. Comput. Graph. Statist., 9, 1–59.

    Google Scholar 

  • Magnus, J. R. and Neudecker, H. (1988). Matrix Differential Calculus with Applications in Statistics and Econometrics, Wiley, New York.

    Google Scholar 

  • McLachlan, G. J. and Krishnan, T. (1997). The EM Algorithm and Extensions, Wiley, New York.

    Google Scholar 

  • Murphy, S. A., Rossini, A. J. and Van der Vaart, A. W. (1997). MLE in the proportional odds model, J. Amer. Statist. Assoc., 92, 968–976.

    Google Scholar 

  • Ortega, J. M. and Rheinboldt, W. C. (1970). Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, Orlando.

    Google Scholar 

  • Ripley, B. D. (1987). Stochastic Simulation, Wiley, New York.

    Google Scholar 

  • Seneta, E. (1973). Non-Negative Matrices, Wiley, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Hunter, D.R., Lange, K. Computing Estimates in the Proportional Odds Model. Annals of the Institute of Statistical Mathematics 54, 155–168 (2002). https://doi.org/10.1023/A:1016126007531

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016126007531

Navigation