Skip to main content
Log in

Evaluation of Drugs Acting at Glutamate Transporters in Organotypic Hippocampal Cultures: New Evidence on Substrates and Blockers in Excitotoxicity

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Removal of L-glutamate (Glu) from the synapse is critical to maintain normal transmission and to prevent excitotoxicity, and is performed exclusively by excitatory amino acid transporters (EAATs). We investigated the effects of substrates and blockers of EAATs on extracellular Glu and cellular viability in organotypic cultures of rat hippocampus. Seven-day treatment with a range of drugs (L-trans-pyrrolidine-2,4-dicarboxylate, (2S,4R)-4-methyl-glutamate, (±)-threo-3-methylglutamate and DL-threo-β-benzyloxyaspartate), in the presence of 300 μM added Glu, resulted in increased extracellular Glu and a significant correlation between Glu concentration and cellular injury (as indicated by lactate dehydrogenase release). In contrast, (2S,3S,4R)-2-(carboxycyclopropyl)glycine (L-CCG-III) exerted a novel neuroprotection against this toxicity, and elevations in extracellular Glu were not toxic in the presence of this compound. Similar results were obtained following two-week treatment of cultures without added Glu. Whilst blockade of GLT-1 alone was relatively ineffective in producing excitotoxic injury, heteroexchange of Glu by EAAT substrates may exacerbate excitotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Fonnum, F. 1984. Glutamate: A neurotransmitter in mammalian brain. J. Neurochem. 42:1–11.

    Google Scholar 

  2. Lipton, S. A. and Rosenberg, P. A. 1994. Excitatory amino acids as a final common pathway for neurologic disorders. New Eng. J. Med. 330:613–622.

    Google Scholar 

  3. Hollmann, M. and Heinemann, S. 1994. Cloned glutamate receptors. Annu. Rev. Neurosci. 17:31–108.

    Google Scholar 

  4. Danbolt, N. C. 2001. Glutamate uptake. Prog. Neurobiol. 65: 1–105.

    Google Scholar 

  5. Rosenberg, P. A., Amin, S., and Lietner, M. 1992. Glutamate uptake disguises neurotoxic potency of glutamate agonists in cerebral cortex in dissociated cell culture. J. Neurosci. 12:56–61.

    Google Scholar 

  6. Gegelashvili, G. and Schousboe, A. 1997. High affinity glutamate transporters: Regulation of expression and activity. Mol. Pharmacol. 52:6–15.

    Google Scholar 

  7. Masliah, E., Alford, M., DeTeresa, R., Mallory, M., and Hansen, L. 1996. Deficient glutamate transport is associated with neurodegeneration in Alzheimer.txt ren disease. Ann. Neurol. 40:759–766.

    Google Scholar 

  8. Robinson, M. B. and Dowd, L. A. 1997. Heterogeneity and functional properties of subtypes of sodium-dependent glutamate transporters in the mammalian central nervous system. Adv. Pharmacol. 37:69–115.

    Google Scholar 

  9. Hertz, L., Dringen, R., Schousboe, A., and Robinson, S. R. 1999. Astrocytes: Glutamate producers for neurons. J. Neurosci. Res. 57:417–428.

    Google Scholar 

  10. Rae, C., Lawrance, M. L., Dias, L. S., Provis, T., Bubb, W. A., and Balcar, V. J. 2000. Strategies for studies of neurotoxic mechanisms involving deficient transport of L-glutamate: Antisense knockout in rat brain in vivo and changes in the neurotransmitter metabolism following inhibition of glutamate transport in guinea pig brain slices. Brain Res. Bull. 53:373–381.

    Google Scholar 

  11. Furuta, A., Rothstein, J. D., and Martin, L. J. 1997. Glutamate transporter protein subtypes are expressed differentially during rat CNS development. J. Neurosci. 17:8363–8375.

    Google Scholar 

  12. Pow, D. V. and Barnett, N. L. 2000. Developmental expression of excitatory amino acid transporter 5: A photoreceptor and bipolar cell glutamate transporter in rat retina. Neurosci. Lett. 280:21–24.

    Google Scholar 

  13. Rothstein, J. D., Dykes-Hoberg, M., Pardo, C. A., Bristol, L. A., Jin, L., Kuncl, R. W., Kanai, Y., Hediger, M. A., Wang, Y., Schielke, J. P., and Welty, D. F. 1996. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16:675–686.

    Google Scholar 

  14. Dunlop, J., Zaleska, M. M., Eliasof, S., and Moyer, J. A. 1999. Excitatory amino acid transporters as emerging targets for central nervous system therapeutics. Emerg. Therap. Targets 3:543–570.

    Google Scholar 

  15. Bridges, R. J., Kavanaugh, M. P., and Chamberlin, A. R. 1999. A pharmacological review of competitive inhibitors and substrates of high-affinity, sodium-dependent glutamate transport in the central nervous system. Curr. Pharmaceut. Des. 5:363–379.

    Google Scholar 

  16. Noraberg, J., Kristensen, B. W., and Zimmer, J. 1999. Markers for neuronal degeneration in organotypic slice cultures. Brain Res. Prot. 3:278–290.

    Google Scholar 

  17. Lehre, K. P., Levy, L. M., Ottersen, O. P., Storm-Mathisen, J., and Danbolt, N. C. 1995. Differential expression of two glial glutamate transporters in the rat brain: Quantitative and immunocytochemical observations. J. Neurosci. 15:1835–1853.

    Google Scholar 

  18. Danbolt, N. C., Lehre, K. P., Dehnes, Y., Chaudhry, F. A., and Levy, L. M. 1998. Localization of transporters using transporterspecific antibodies. Meth. Enzymol. 296:388–407.

    Google Scholar 

  19. Vandenberg, R. J., Mitrovic, A. D., Chebib, M., Balcar, V. J., and Johnston, G. A. R. 1997. Contrasting modes of action of methylglutamate derivatives on the excitatory amino acid transporters, EAAT1 and EAAT2. Mol. Pharmacol. 51:809–815.

    Google Scholar 

  20. Koh, J. Y. and Choi, D. W. 1987. Quantitative determination of glutamate mediated cortical neuronal injury in cell culture by lactate dehydrogenase efflux assay. J. Neurosci. Meth. 20:83–90.

    Google Scholar 

  21. Keene, O. N. 1995. The log transformation is special. Stat. Med. 14:811–819.

    Google Scholar 

  22. Stoppini, L., Buchs, P. A., and Muller, D. 1991. A simple method for organotypic cultures of nervous tissue. J. Neurosci. Meth. 37:173–182.

    Google Scholar 

  23. Bahr, B. A. 1995. Long-term hippocampal slices: A model system for investigating synaptic mechanisms and pathologic processes. J. Neurosci. Res. 42:294–305.

    Google Scholar 

  24. Dugan, L. L., Bruno, V. M., Amagasu, S. M., and Giffard, R. G. 1995. Glia modulate the response of murine cortical neurons to excitotoxicity: Glia exacerbate AMPA neurotoxicity. J. Neurosci. 15:4545–4555.

    Google Scholar 

  25. Vornov, J. J., Tasker, R. C., and Park, J. 1995. Neurotoxicity of acute glutamate transport blockade depends on coactivation of both NMDA and AMPA/Kainate receptors in organotypic hippocampal cultures. Exp. Neurol. 133:7–17.

    Google Scholar 

  26. Amin, N. and Pearce, B. 1997. Glutamate toxicity in neuronenriched and neuron-astrocyte co-cultures: Effect of the glutamate uptake inhibitor L-trans-pyrrolidine-2,4–dicarboxylate. Neurochem. Int. 30:271–276.

    Google Scholar 

  27. Okazaki, S., Nishida, Y., Kawai, H., and Saito, S. 1996. Acute neurotoxicity of L-glutamate induced by impairment of the glutamate uptake system. Neurochem. Res. 21:1201–1207.

    Google Scholar 

  28. Volterra, A., Bezzi, P., Rizzini, B. L., Trotti, D., Ullensvang, K., Danbolt, N. C., and Racagni, G. 1996. The competitive transport inhibitor L-trans-pyrrolidine-2,4–dicarboxylate triggers excitotoxicity in rat cortical neuron-astrocyte co-cultures via glutamate release rather than uptake inhibition. Eur. J. Neurosci. 8:2019–2028.

    Google Scholar 

  29. Carver, J. M., Mansson, P. E., Cortes-Burgos, L., Shu, J., Zhou, L. M., Howe, J. R., and Giordano, T. 1996. Cytotoxic effects of kainate ligands on HEK cell lines expressing recombinant kainate receptors. Brain Res. 720:69–74.

    Google Scholar 

  30. Donevan, S. D., Beg, A., Gunther, J. M., and Twyman, R. E. 1998. The methylglutamate, SYM 2081, is a potent and highly selective agonist at kainate receptors. J. Pharmacol. Exp. Ther. 285:539–545.

    Google Scholar 

  31. Velasco, I., Tapia, R., and Massieu, L. 1996. Inhibition of glutamate uptake induces progressive accumulation of extracellular glutamate and neuronal damage in rat cortical cultures. J. Neurosci. Res. 44:551–561.

    Google Scholar 

  32. Kawai, M., Horikawa, Y., Ishihara, T., Shimamoto, K., and Ohfune, Y. 1992. 2–(Carboxycyclopropyl)glycines: Binding, neurotoxicity and induction of intracellular free Ca2+ increase. Eur. J. Pharmacol. 211:195–202.

    Google Scholar 

  33. Bruce, A. J., Sakhi, S., Schreiber, S. S., and Baudry, M. 1995. Development of kainic acid and N-methyl-D-aspartic acid toxicity in organotypic hippocampal cultures. Exp. Neurol. 132: 209–219.

    Google Scholar 

  34. Casaccia-Bonnefil, P., Benedikz, E., Rai, R., and Bergold, P. J. 1993. Excitatory and inhibitory pathways modulate kainate excitotoxicity in hippocampal slice cultures. Neurosci. Lett. 154:5–8.

    Google Scholar 

  35. Giardina, S. F., Cheung, N. S., Reid, M. T., and Beart, P. M. 1998. Kainate-induced apoptosis in cultured murine cerebellar granule cells elevates expression of the cell cycle gene cyclin D1. J. Neurochem. 71:1325–1328.

    Google Scholar 

  36. Turetsky, D. M., Canzoniero, L. M., Sensi, S. L., Weiss, J. H., Goldberg, M. P., and Choi, D. W. 1994. Cortical neurones exhibiting kainate-activated Co2+ uptake are selectively vulnerable to AMPA/kainate receptor-mediated toxicity. Neurobiol. Disease 1:101–110.

    Google Scholar 

  37. Lei, D. L., Yang, D. L., and Liu, H. M. 1996. Local injection of kainic acid causes widespread degeneration of NADPH-d neurons and induction of NADPH-d in neurons, endothelial cells and reactive astrocytes. Brain Res. 730:199–206.

    Google Scholar 

  38. Rothstein, J. D., Jin, L., Dykes-Hoberg, M., and Kuncl, R. W. 1993. Chronic inhibition of glutamate uptake produces a model of slow neurotoxicity. Proc. Natl. Acad. Sci. USA 90:6591–6595.

    Google Scholar 

  39. Vandenberg, R. J. 1998. Molecular pharmacology and physiology of glutamate transporters in the central nervous system. Clin. Exp. Pharmacol. Physiol. 25:393–400.

    Google Scholar 

  40. Robinson, M. B., Djali, S., and Buchhalter, J. R. 1993. Inhibition of glutamate uptake with L-trans-pyrrolidine-2,4–dicarboxylate potentiates glutamate toxicity in primary hippocampal cultures. J. Neurochem. 61:2099–2103.

    Google Scholar 

  41. Blitzblau, R., Gupta, S., Djali, S., Robinson, M. B., and Rosenberg, P. A. 1996. The glutamate transport inhibitor L-trans-pyrrolidine-2,4–dicarboxylate indirectly evokes NMDA receptor mediated neurotoxicity in rat cortical cultures. Eur. J. Neurosci. 8:1840–1852.

    Google Scholar 

  42. Apricó, K., Beart, P. M., Lawrence, A. J., Crawford, D., and O'Shea, R. D. 2001. [3H]-(2S,4R)-4–Methylglutamate: A novel ligand for the characterisation of glutamate transporters. J. Neurochem. 77:1218–1225.

    Google Scholar 

  43. Brauner-Osborne, H., Nielsen, B., Stensbol, T. B., Johansen, T. N., Skjaerbaek, N., and Krogsgaard-Larsen, P. 1997. Molecular pharmacology of 4–substituted glutamic acid analogues at ionotropic and metabotropic excitatory amino acid receptors. Eur. J. Pharmacol. 335:R1–3.

    Google Scholar 

  44. Carroll, F. Y., Finkelstein, D. I., Horne, M. K., Lawrence, A. J., Crawford, D., Paxinos, G., and Beart, P. M. 1998. Regional distribution of low affinity kainate receptors in brain of Macaca fascicularis determined by autoradiography using [3H](2S,4R)-4–methylglutamate. Neurosci. Lett. 255:71–74.

    Google Scholar 

  45. Toms, N. J., Reid, M. E., Phillips, W., Kemp, M. C., and Roberts, P. J. 1997. A novel kainate receptor ligand [3H]-(2S,4R)-4–methylglutamate: Pharmacological characterization in rabbit brain membranes. Neuropharmacology 36:1483–1488.

    Google Scholar 

  46. Gegelashvili, G., Civenni, G., Racagni, G., Danbolt, N. C., Schousboe, I., and Schousboe, A. 1996. Glutamate receptor agonists up-regulate glutamate transporter GLAST in astrocytes. Neuroreport 8:261–265.

    Google Scholar 

  47. Duan, S. M., Anderson, C. M., Stein, B. A., and Swanson, R. A. 1999. Glutamate induces rapid upregulation of astrocyte glu-tamate transport and cell-surface expression of GLAST. J. Neurosci. 19:10193–10200.

    Google Scholar 

  48. Gegelashvili, G., Dehnes, Y., Danbolt, N. C., and Schousboe, A. 2000. The high-affinity glutamate transporters GLT1, GLAST, and EAAT4 are regulated via different signalling mechanisms. Neurochem. Int. 37:163–170.

    Google Scholar 

  49. Shimamoto, K., Lebrun, B., Yasuda-Kamatani, Y., Sakaitani, M., Shigeri, Y., Yumoto, N., and Nakajima, T. 1998. DL-threo-β-benzyloxyaspartate, a potent blocker of excitatory amino acid transporters. Mol. Pharmacol. 53:195–201.

    Google Scholar 

  50. Jabaudon, D., Shimamoto, K., Yasuda-Kamatani, Y., Scanziani, M., Gähwiler, B. H., and Gerber, U. 1999. Inhibition of uptake unmasks rapid extracellular turnover of glutamate of nonvesicular origin. Proc. Natl. Acad. Sci. U.S.A. 96:8733–8738.

    Google Scholar 

  51. Robinson, M. B., Sinor, J. D., Dowd, L. A., and Kerwin, J. F., Jr. 1993. Subtypes of sodium-dependent high-affinity L-[3H]-glutamate transport activity: pharmacologic specificity and regulation by sodium and potassium. J. Neurochem. 60:167–179.

    Google Scholar 

  52. Pozzo Miller, L. D., Mahanty, N. K., Connor, J. A., and Landis, D. M. 1994. Spontaneous pyramidal cell death in organotypic slice cultures from rat hippocampus is prevented by glutamate receptor antagonists. Neuroscience 63:471–487.

    Google Scholar 

  53. McAdoo, D. J., Xu, G., Robak, G., Hughes, M. G., and Price, E. M. 2000. Evidence that reversed glutamate uptake contributes significantly to glutamate release following experimental injury to the rat spinal cord. Brain Res. 865:283–285.

    Google Scholar 

  54. Phillis, J. W., Ren, J., and O'Regan, M. H. 2000. Transporter reversal as a mechanism of glutamate release from the ischemic rat cerebral cortex: Studies with DL-threo-β-benzyloxyaspartate. Brain Res. 868:105–112.

    Google Scholar 

  55. Rossi, D. J., Oshima, T., and Attwell, D. 2000. Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature 403:316–321.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Shea, R.D., Fodera, M.V., Apricó, K. et al. Evaluation of Drugs Acting at Glutamate Transporters in Organotypic Hippocampal Cultures: New Evidence on Substrates and Blockers in Excitotoxicity. Neurochem Res 27, 5–13 (2002). https://doi.org/10.1023/A:1014813518604

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014813518604

Navigation