Skip to main content
Log in

Asymptotic Normality of Kernel Density Estimators under Dependence

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we study the kernel methods for density estimation of stationary samples under generalized conditions, which unify both the linear and α-mixing processes discussed in the literature and also adapt to the non-linear or/and non-α-mixing processes. Under general, mild conditions, the kernel density estimators are shown to be asymptotically normal. Some specific theorems are derived within various contexts, and their applications and relationship with the relevant references are considered. It is interesting that the conditions on the bandwidth may be very simple, even in the generalized context. The stationary sequences discussed cover a large number of (linear or nonlinear) time series and econometric models (such as the ARMA processes with ARCH errors).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews, D. W. K. (1984). Non-strong mixing autoregressive processes, J. Appl. Probab., 21, 930-934.

    Google Scholar 

  • Bierens, H. J. (1983). Uniform consistency of kernel estimators of a regression function under generalized conditions, J. Amer. Statist. Assoc., 78, 699-707.

    Google Scholar 

  • Billingsley, P. (1968). Convergence of Probability Measures, Wiley, New York.

    Google Scholar 

  • Chanda, K. C. (1983). Density estimation for linear processes, Ann. Inst. Statist. Math., 35, 439-446.

    Google Scholar 

  • Devroye, L. and Györfi, L. (1985). Nonparametric Density Estimation: The L 1 View, Wiley, New York.

    Google Scholar 

  • Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of United Kingdom inflation, Econometrica, 50, 987-1007.

    Google Scholar 

  • Goródetskii, V. V. (1977). On the strong mixing properties for linear sequences, Theory Probab. Appl., 22, 411-413.

    Google Scholar 

  • Granger, C. W. J. and Andersen, A. P. (1978). An Introduction to Bilinear Time Series Models, Vandenhoeck and Ruprecht, Göttingen.

    Google Scholar 

  • Györfi, L., Härdle, W., Sarda, P. and Vieu, P. (1989). Nonparametric Curve Estimation from Time Series, Lecture Notes in Statist., No. 60, Springer, New York.

    Google Scholar 

  • Hall, P. and Heyde, C. C. (1980). Martingale Limit Theory and Its Applications, Academic Press, New York.

    Google Scholar 

  • Hallin, M. and Tran, L. T. (1996). Kernel density estimation for linear processes: asymptotic normality and optimal bandwidth derivation. Ann. Inst. Statist. Math., 48, 429-449.

    Google Scholar 

  • Ibragimov, I. A. (1962). Some limit theorems for stationary processes, Theory Probab. Appl., 7, 349-382.

    Google Scholar 

  • Irle, A. (1997). On consistency in nonparametric estimation under mixing conditions, J. Multivariate Anal., 60, 123-147.

    Google Scholar 

  • Ling, S. and Li, W. K. (1997). On fractionally integrated autoregressive moving-average time series models with conditional heteroscedasticity, J. Amer. Statist. Assoc., 92, 1184-1194.

    Google Scholar 

  • Lu, Z. D. (1996a). A note on geometric ergodicity of autoregressive conditional heteroscedasticity (ARCH) model, Statist. Probab. Lett., 30, 305-311.

    Google Scholar 

  • Lu, Z. D. (1996b). Geometric ergodicity of a general ARCH type model with applications to some typical models, Chinese Sci. Bull., 41, 1630.

    Google Scholar 

  • Masry, E. (1986). Recursive probability density estimation for weakly dependent stationary processes, IEEE Trons. Inform. Theory, 32, 254-267.

    Google Scholar 

  • Nicholls, D. F. and Quinn, B. G. (1982). Random Coefficient Autoregressive Models, Lecture Notes in Statist, No. 11. Springer, New York.

    Google Scholar 

  • Pham, D. T. (1986). The mixing property of bilinear and generalized random coefficient models, Stochastic Process. Appl., 23, 291-300.

    Google Scholar 

  • Robinson, P. M. (1983). Nonparametric estimators for time series, J. Time Ser. Anal., 4, 185-197.

    Google Scholar 

  • Roussas, G. G. (1988). Nonparametric estimation in mixing sequences of random variables, J. Statist. Plann. Inference, 18, 135-149.

    Google Scholar 

  • Tjøstheim, D. (1986). Some doubly stochastic time series models. J. Time Ser. Anal., 7, 51-72.

    Google Scholar 

  • Tjøstheim, D. (1996). Measures of dependence and tests of independence, Statistics, 28, 249-284.

    Google Scholar 

  • Tong, H. (1990). Nonlinear Time Series: A Dynamical System Approach, Oxford University Press, Oxford.

    Google Scholar 

  • Tran, L. T. (1989). Recursive density estimation under dependence, IEEE Trans. Inform. Theory, 35, 1103-1108.

    Google Scholar 

  • Tran, L. T. (1992). Kernel density estimation for linear processes, Stochastic Process. Appl., 41, 281-296.

    Google Scholar 

  • Tran, L. T., Roussas, G., Yakowitz, S. and Truong Van, B. (1996). Fixed-design regression for linear time series, Ann. Statist., 24, 975-991

    Google Scholar 

  • Weiss, A. A. (1984). ARMA model with ARCH errors, J. Time Ser. Anal., 5, 129-143.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Lu, Z. Asymptotic Normality of Kernel Density Estimators under Dependence. Annals of the Institute of Statistical Mathematics 53, 447–468 (2001). https://doi.org/10.1023/A:1014652626073

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014652626073

Navigation