Skip to main content
Log in

Stochastic Ordering of Multivariate Normal Distributions

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

We show an interesting identity for Ef(Y) − Ef(X), where X, Yare normally distributed random vectors and f is a function fulfilling some weak regularity condition. This identity will be used for a unified derivation of sufficient conditions for stochastic ordering results of multivariate normal distributions, some well known ones as well as some new ones. Moreover, we will show that many of these conditions are also necessary. As examples we will consider the usual stochastic order, convex order, upper orthant order, supermodular order and directionally convex order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bäuerle, N. (1997). Inequalities for stochastic models via supermodular orders, Comm. Statist. Stochastic Models, 13, 181-201.

    Google Scholar 

  • Bäuerle, N. and Müller, A. (1998). Modeling and comparing dependencies in multivariate risk portfolios, ASTIN Bulletin, 28, 59-76.

    Google Scholar 

  • Bäuerle, N. and Rolski, T. (1998). A monotonicity result for the work-load in Markov-modulated queues, J. Appl. Probab., 35, 741-747.

    Google Scholar 

  • Block, H. W. and Sampson, A. R. (1988). Conditionally ordered distributions, J. Multivariate Anal., 27, 91-104.

    Google Scholar 

  • Dudley R. M. (1989). Real Analysis and Probability, Wadsworth & Brooks, Pacific Grove.

    Google Scholar 

  • Houdré, C., Pérez-Abreu, V. and D. Surgailis (1998). Interpolation, correlation identities and inequalities for infinitely divisible variables, J. Fourier Anal. Appl., 4, 651-668.

    Google Scholar 

  • Huffer, F. W. (1986). Slepian's inequality via the central limit theorem, Canad. J. Statist., 14, 367-370.

    Google Scholar 

  • Joag-Dev, K., Perlman, M. D. and Pitt, L. D. (1983). Association of normal random variables and Slepian's inequality, Ann. Probab., 11, 451-455.

    Google Scholar 

  • Meester, L. E. and Shanthikumar, J. G. (1993). Regularity of stochastic processes: A theory of directional convexity, Probab. Engrg. Inform. Sci., 7, 343-360.

    Google Scholar 

  • Mosler, K. (1984). Characterization of some stochastic orderings in multinormal and elliptic distributions, Operations research, Proceedings of the 12th Annual Meeting in Mannheim 1983, 520-527.

  • Müller, A. (1997). Stochastic orders generated by integrals: A unified study, Advances in Applied Probability, 29, 414-428.

    Google Scholar 

  • Müller, A. and Scarsini, M. (1999). Stochastic comparison of random vectors with fixed copulae, WIOR-Report 554, University Karlsruhe.

  • Müller, A. and Scarsini, M. (2000). Some remarks on the supermodular order, J. Multivariate Anal., 73, 107-119.

    Google Scholar 

  • Rüschendorf, L. (1980). Inequalities for the expectation of Δ-monotone functions, Z. Wahrsch. Verw. Gebiete, 54, 341-349.

    Google Scholar 

  • Scarsini, M. (1998). Multivariate convex orderings, dependence, and stochastic equality, J. Appl. Probab., 35, 93-103.

    Google Scholar 

  • Shaked, M. and Shanthikumar, J. G. (1990). Parametric stochastic convexity and concavity of stochastic processes, Ann. Inst. Statist. Math., 42, 509-531.

    Google Scholar 

  • Shaked, M. and Shanthikumar, J. G. (1994). Stochastic Orders and Their Applications, Academic Press, London.

    Google Scholar 

  • Shaked, M. and Shanthikumar, J. G. (1997). Supermodular stochastic orders and positive dependence of random vectors, J. Multivariate Anal., 61, 86-101.

    Google Scholar 

  • Stoyan, D. (1983). Comparison Methods for Queues and Other Stochastic Models, Wiley, Chichester.

    Google Scholar 

  • Szekli, R. (1995). Stochastic Ordering and Dependence in Applied Probability, Lecture Notes in Statistics, Vol. 97, Springer, New York.

    Google Scholar 

  • Tong, Y. L. (1980). Probability Inequalities in Multivariate Distributions, Academic Press, New York.

    Google Scholar 

  • Tong, Y. L. (1990). The Multivariate Normal Distribution, Springer, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Müller, A. Stochastic Ordering of Multivariate Normal Distributions. Annals of the Institute of Statistical Mathematics 53, 567–575 (2001). https://doi.org/10.1023/A:1014629416504

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014629416504

Navigation