Skip to main content
Log in

Trace Formula for Noisy Flows

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A trace formula is derived for the Fokker–Planck equation associated with Itô stochastic differential equations describing noisy time-continuous nonlinear dynamical systems. In the weak-noise limit, the trace formula provides estimations of the eigenvalues of the Fokker–Planck operator on the basis of the Pollicott–Ruelle resonances of the noiseless deterministic system, which is assumed to be non-bifurcating. At first order in the noise amplitude, the effect of noise on a periodic orbit is given in terms of the period and the derivative of the period with respect to the pseudo-energy of the Onsager–Machlup–Freidlin–Wentzell scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. Nicolis, Introduction to Nonlinear Science (Cambridge University Press, Cambridge, 1995).

    Google Scholar 

  2. G. Nicolis and I. Prigogine, Self-Organization in Nonequilibrium Systems (Wiley, New York, 1977).

    Google Scholar 

  3. N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1981).

    Google Scholar 

  4. W. Horsthemcke and R. Lefever, Noise-Induced Transitions: Theory and Applications in Physics, Chemistry, and Biology (Springer-Verlag, Berlin, 1984).

    Google Scholar 

  5. C. W. Gardiner, Handbook of Stochastic Methods (Springer-Verlag, New York, 1990).

    Google Scholar 

  6. P. Hänggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys. 62:251 (1990).

    Google Scholar 

  7. L. Arnold, Random Dynamical Systems (Springer-Verlag, Berlin, 1998).

    Google Scholar 

  8. G. Nicolis and I. Prigogine, Proc. Natl. Acad. Sci. (USA) 68:2102 (1971).

    Google Scholar 

  9. G. Nicolis, J. Statist. Phys. 6:195 (1972).

    Google Scholar 

  10. G. Nicolis and M. Malek Mansour, Prog. Theor. Phys. Suppl. 64:249 (1978).

    Google Scholar 

  11. F. Baras, M. Malek Mansour, and C. Van Den Broeck, J. Statist. Phys. 28:577 (1982).

    Google Scholar 

  12. F. Baras, J. E. Pearson, and M. Malek Mansour, J. Chem. Phys. 93:5747 (1990).

    Google Scholar 

  13. F. Baras, Topics in Nonequilibrium Statistical Mechanics of Reactive Systems (Thèse d'Agrégation de l'Enseignement Supérieur, Université Libre de Bruxelles, février 2001).

  14. M. Mareschal and A. De Wit, J. Chem. Phys. 96:2000 (1992).

    Google Scholar 

  15. W. Vance and J. Ross, J. Chem. Phys. 105:479 (1996).

    Google Scholar 

  16. L. Onsager and S. Machlup, Phys. Rev. 91:1505 (1953).

    Google Scholar 

  17. S. Machlup and L. Onsager, Phys. Rev. 91:1512 (1953).

    Google Scholar 

  18. G. L. Eyink, J. Statist. Phys. 61:533 (1990).

    Google Scholar 

  19. M. I. Freidlin and A. D. Wentzell, Random Perturbations of Dynamical Systems (Springer-Verlag, Berlin, 1984).

    Google Scholar 

  20. R. Graham and T. Tél, Phys. Rev. A 31:1109 (1985).

    Google Scholar 

  21. R. S. Maier and D. L. Stein, Phys. Rev. Lett. 71:1783 (1993).

    Google Scholar 

  22. M. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer-Verlag, New York, 1990).

    Google Scholar 

  23. M. Gutzwiller, in Chaos and Quantum Physics, M.-J. Giannoni, A. Voros, and J. Zinn-Justin, eds., Les Houches 1989, Session LII (North-Holland, Amsterdam, 1991), pp. 201-250.

    Google Scholar 

  24. H.-J. Stöckmann, Quantum Chaos: An Introduction (Cambridge University Press, Cambridge, UK, 1999).

    Google Scholar 

  25. G. Nicolis and P. Gaspard, Chaos, Solitons & Fractals 4:41 (1994).

    Google Scholar 

  26. P. Cvitanovi? and B. Eckhardt, J. Phys. A: Math. Gen. 24:L237 (1991).

    Google Scholar 

  27. M. Pollicott, Invent. Math. 81:413 (1985); 85:147 (1986).

    Google Scholar 

  28. D. Ruelle, Phys. Rev. Lett. 56:405 (1986); J. Statist. Phys. 44:281 (1986); J. Diff. Geom. 25:117 (1987); Commun. Math. Phys. 125:239 (1989).

    Google Scholar 

  29. P. Gaspard, Chaos, Scattering, and Statistical Mechanics (Cambridge University Press, Cambridge, 1998).

    Google Scholar 

  30. C. P. Dettmann, Phys. Rev. E 59:5231 (1999).

    Google Scholar 

  31. P. Cvitanovi?, C. P. Dettmann, R. Mainieri, and G. Vattay, J. Statist. Phys. 93:981 (1998).

    Google Scholar 

  32. P. Cvitanovi?, C. P. Dettmann, R. Mainieri, and G. Vattay, Nonlinearity 12:939 (1999).

    Google Scholar 

  33. P. Cvitanovi?, C. P. Dettmann, N. Søndergaard, G. Vattay, and G. Palla, Phys. Rev. E 60:3936 (1999).

    Google Scholar 

  34. G. Palla, G. Vattay, A. Voros, N. Søndergaard, and C. P. Dettmann, Foundations of Physics 31:641 (2001).

    Google Scholar 

  35. N. Søndergaard, G. Palla, G. Vattay, and A. Voros, J. Statist. Phys. 101:385 (2000).

    Google Scholar 

  36. R. Kubo, K. Matsuo, and K. Kitahara, J. Statist. Phys. 9:51 (1973).

    Google Scholar 

  37. K. Kitahara, Adv. Chem. Phys. 29:85 (1975).

    Google Scholar 

  38. A. Suárez, J. Ross, B. Peng, K. L. C. Hunt, and P. M. Hunt, J. Chem. Phys. 102:4563 (1995).

    Google Scholar 

  39. P. Gaspard, D. Alonso, and I. Burghardt, Adv. Chem. Phys. 90:105 (1995).

    Google Scholar 

  40. R. G. Littlejohn, J. Math. Phys. 31:2952 (1990).

    Google Scholar 

  41. R. Graham, Phys. Rev. A 25:3234 (1982).

    Google Scholar 

  42. R. Graham and T. Tél, Phys. Rev. A 33:1322 (1986).

    Google Scholar 

  43. R. Graham and T. Tél, Phys. Rev. A 35:1328 (1987).

    Google Scholar 

  44. P. Gaspard, G. Nicolis, A. Provata, and S. Tasaki, Phys. Rev. E 51:74 (1995).

    Google Scholar 

  45. R. Artuso, E. Aurell, and P. Cvitanovi?, Nonlinearity 3:325, 361 (1990).

    Google Scholar 

  46. M. Dykman, X. Chu, and J. Ross, Phys. Rev. E 48:1646 (1993).

    Google Scholar 

  47. D. Gonze, J. Halloy, and A. Goldbeter, Robustness of Circadian Rhythms with Respect to Molecular Noise (preprint, Université Libre de Bruxelles, 2001).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaspard, P. Trace Formula for Noisy Flows. Journal of Statistical Physics 106, 57–96 (2002). https://doi.org/10.1023/A:1013167928166

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013167928166

Navigation