Skip to main content
Log in

Below-Ground Processes in Gap Models for Simulating Forest Response to Global Change

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Gap models have a rich history of being used to simulate individual tree interactions that impact species diversity and patterns of forest succession. Questions arise, however, as to whether these same models can be used to study the response offorest structure and composition under a changing climate. In contrast to many process-based models, gap models have traditionally been based on rather descriptive representations of species-specific growth processes. Opportunities now exist to expand upon these simple empirical relationships with more mechanistic descriptions of growth, the response of growth to environmental variables, and competition among species for available light, water, and nutrient resources.In this paper, we focus on several areas of below-ground researchwith the potential to improve the utility of gap models for predicting forest composition in response to a changing climate.Specific areas for model improvement include (1) improved descriptions of the soil environment for seed germination andsubsequent seedling establishment, (2) multi-layer representations of soil water and nutrient availability, (3) moreaccurate information on biomass allocation to roots and rootdistribution within the soil profile, (4) improved treatment ofinter- and intra-specific competition for available soil resources, (5) increased consideration of spatial processes as related to land-surface hydrology, and (6) improved attention to above- and below-ground interactions. This list is meant tostimulate discussion and provide guidance for future field research and model development.As an example of how increased attention to below-ground processes could help address intra-specific competition for wateramong trees of differing size classes, the gap model LINKAGES was modified to include a sub-model of multi-layered soil hydrology. It was then used to examine the impact of root distribution within soils on the simulated drought response of seedlings, saplings, and mature trees. An annual simulation of soil water content for a deciduous forest in eastern Tennessee showed thatseedlings whose roots were restricted to the upper 20-cm of thesoil experienced far more `drought days' than did saplings andlarger trees that otherwise had access to deeper soil water reserves.We recognize that models of forest succession cannot include mechanistic detail on all potential below-ground processes and that there are obvious tradeoffs between model simplicity and more sophisticated parameterizations. We conclude, however, thatfeedbacks among global environmental change, seed germination and seedling establishment, above- and below-ground carbon allocation, root distribution within the soil profile, and soilwater and nutrient dynamics will be critically important for predicting forest dynamics and ecosystem function in the 21stcentury. As a result, steps should now be taken to ensure thatthese processes are represented in future gap models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aber, J. D.: 1997, ‘Why Don't We Believe the Models?’, Bull. Ecol. Soc. Amer. July, 232–233.

  • Aber, J. D. and Driscoll, C. T.: 1997, ‘Effects of Land Use, Climate Variation and N Deposition on N Cycling and C Storage in Northern Hardwood Forests’, Global Biogeochem. Cycles 11, 639–648.

    Google Scholar 

  • Aber, J. D., Melillo, J. M., and McClaugherty, C. A.: 1990, ‘Predicting Long-Term Patterns of Mass Loss, Nitrogen Dynamics, and Soil Organic Matter Formation from Initial Fine Litter Chemistry in Temperate Forest Ecosystems’, Can. J. Bot. 68, 2201–2208.

    Google Scholar 

  • Ågren, G. I.: 1985, ‘Theory for Growth of Plants Derived from the Nitrogen Productivity Concept’, Physiol. Plant. 64, 17–28.

    Google Scholar 

  • Ågren, G. I. and Ingestad, T.: 1987, ‘Root: Shoot Ratio as a Balance between Nitrogen Productivity and Photosynthesis’, Plant Cell Environ. 10, 579–586.

    Google Scholar 

  • Badeck, F.-W., Lischke, H., Bugmann, H., Hickler, T., Hönninger, K., Lasch, P., Lexer, M. J., Mouillot, F., Schaber, J., and Smith, B.: 2001, ‘Tree Species Composition in European Pristine Forests: Comparison of Stand Data to Model Predictions’, Clim. Change 51, 307–347.

    Google Scholar 

  • Black, R. A. and Bliss, L. C.: 1980, ‘Reproductive Ecology of Picea mariana(Mill) BSP, at Tree Line Near Inuvik, Northwest Territories, Canada’, Ecol. Monogr. 50, 331–354.

    Google Scholar 

  • Botkin, D. B., Janak, J. F., and Wallis, J. R.: 1972, ‘Some Ecological Consequences of a Computer Model of Forest Growth’, J. Ecol. 60,849–872.

    Google Scholar 

  • Broncano, M. J., Riba, M., and Retana, J.: 1998, ‘Seed Germination and Seedling Performance of Two Mediterranean Tree Species, Holm Oak (Quercus ilexL.) and Aleppo pine (Pinus halepensisMill.): A Multifactor Experimental Approach’, Plant Ecology 138, 17–26.

    Google Scholar 

  • Brouwer, R.: 1962, ‘Nutritive Influences on the Distribution of Dry Matter in the Plant’, Netherlands J. Agri. Sci. 10, 399–408.

    Google Scholar 

  • Bugmann, H.: 2001, ‘A Review of Forest Gap Models’, Clim. Change 51, 259–305.

    Google Scholar 

  • Bugmann, H. and Cramer, W.: 1998, ‘Improving the Behaviour of Forest GapModels Along Drought Gradients’, For. Ecol. Manage. 103, 247–263.

    Google Scholar 

  • Bugmann, H. K. M., Xiaodong, Y., Sykes, M. T., Martin, P., Linder, M., Desanker, P. V., and Cumming, S. G.: 1996, ‘A Comparison of Forest Gap Models: Model Structure and Behaviour’, Clim. Change 34, 289–313.

    Google Scholar 

  • Bugmann, H., Grote, R., Lasch, P., Lindner, M., and Suckow, F.: 1997, ‘A New Forest Gap Model to Study the Effects of Environmental Change on Forest Structure and Functioning’, in Mohren, G. M. J., Kramer, K., and Sabaté, S. (eds.), Global Change Impacts on Tree Physiology and Forest Ecosystems, Kluwer Academic Publishers, pp. 255–261.

  • Bugmann, H. K. M., Wullschleger, S. D., Price, D. T., Ogle, K., Clark, D. F., and Solomon, A. M.: 2001, ‘Comparing the Performance of Forest Gap Models in North America’, Clim. Change 51, 349–388.

    Google Scholar 

  • Canadell, J., Jackson, R. B., Ehleringer, J. R., Mooney, H. A., Sala, O. E., and Schulze, E.-D.: 1996, ‘Maximum Rooting Depth for Vegetation Types at the Global Scale’, Oecologia 108, 583–595.

    Google Scholar 

  • Casper, B. B. and Jackson, R. B.: 1997, ‘Plant Competition Underground’, Ann. Rev. Ecol. Syst. 28,545–570.

    Google Scholar 

  • Chapin III, F. S., Schulze, E., and Mooney, H. A.: 1990, ‘The Ecology and Economics of Storage in Plants’, Ann. Rev. Ecol. Syst. 21, 423–447.

    Google Scholar 

  • Coffin, D. P. and Lauenroth, W. K.: 1990, ‘A Gap Dynamics Simulation Model of Succession in a Semiarid Grassland’, Ecol. Modelling 49, 229–266.

    Google Scholar 

  • Couteaux, M. M., Bottner, P., and Berg, B.: 1995, ‘Litter Decomposition, Climate and Litter Quality’, Trends Ecol. Evol. 10, 63–66.

    Google Scholar 

  • Currie, W. S.: 1999, ‘The Responsive C and N Biogeochemistry of the Temperate Forest Floor’, TREE 14, 316–320.

    Google Scholar 

  • Delucia, E. H., Hamilton, J. G., Naidu, S. L., Thomas, R. B., and Andrews, J. A.: 1999, ‘Net Primary Production of a Forest Ecosystem with Experimental CO2 Enrichment’, Science 284, 1177–1179.

    Google Scholar 

  • Eagleson, P. S.: 1982, ‘Ecological Optimality in Water Limited Natural Soil Vegetation Systems. 1: Theory and Hypothesis’, Water Resour. Res. 18, 325–340.

    Google Scholar 

  • Fenn, M. E., Poth, M. A., Aber, J. D., Baron, J. S., Bormann, B. T., Johnson, D. W., Lemly, A. D., McNulty, S. G., Ryan, D. F., and Stottlemeyer, R.: 1998, ‘Nitrogen Excess in North American Ecosystems: Predisposing Factors, Ecosystem Responses, and Management Strategies’, Ecol. Appl. 8, 706–733.

    Google Scholar 

  • Ferrari, J. B.: 1999, ‘Fine-scale Patterns of Leaf Litterfall and Nitrogen Cycling in an Old-growth Forest’, Can. J. For. Res. 29,291–302.

    Google Scholar 

  • Field, C. B., Chapin III, F. S., Matson, P. A., and Mooney, H. A.: 1992, ‘Responses of Terrestrial Ecosystems to the Changing Atmosphere: A Resource-Based Approach’, Ann. Rev. Ecol. Syst. 23, 201–235.

    Google Scholar 

  • Foley, J. A., Levis, S., Prentice, I. C., Pollard, D., and Thompson, S. L.: 1998, ‘Coupling Dynamic Models of Climate and Vegetation’, Global Change Biol. 4, 561–579.

    Google Scholar 

  • Friedlingstein, P., Joel, G., Field, C. B., and Fung, I. Y.: 1998, ‘Toward an Allocation Scheme for Global Terrestrial Carbon Models’, Global Change Biol. 5, 755–770.

    Google Scholar 

  • Friend, A. D., Shugart, H. H., and Running, S. W.: 1993, ‘A Physiology-Based Model of Forest Dynamics’, Ecology 74, 792–797.

    Google Scholar 

  • Friend, A. D., Stevens, A. K., Knox, R. G., and Cannell, M. G. R.: 1997, ‘A Process-Based, Terrestrial Biosphere Model of Ecosystem Dynamics (Hybrid v3.0)’, Ecol. Modelling 95, 249–287.

    Google Scholar 

  • Hatton, T. J., Salvucci, G. D., and Wu, H. I.: 1997, ‘Eagleson's Optimality Theory of an Ecohydrological Equilibrium: Quo Vadis?’, Func. Ecol. 11,665–674.

    Google Scholar 

  • Hatton, T. J., Walker, J., Dawes, W. R., and Dunin, F. X.: 1992. ‘Simulations of Hydroecological Responses to Elevated CO2 at the Catchment Scale’, Aust. J. Bot. 40, 679–696.

    Google Scholar 

  • Hilbert, D. W.: 1990, ‘Optimization of Plant Root: Shoot Ratios and Internal Nitrogen Concentration’, Ann. Bot. 66, 91–99.

    Google Scholar 

  • Hobbie, S. E.: 1992, ‘Effects of Plant Species on Nutrient Cycling’, TREE 7, 336–339.

    Google Scholar 

  • Holl, K. D.: 1999, ‘Factors Limiting Tropical Rain Forest Regeneration in Abandoned Pasture: Seed Rain, Seed Germination, Microclimate, and Soil’, Biotropica 31,229–242.

    Google Scholar 

  • Hruska, J., Cermak, J., and Sustek, S.: 1999, ‘Mapping Tree Root Systems with Ground-Penetrating Radar’, Tree Physiol. 19, 125–130.

    Google Scholar 

  • Humphries, H. C., Coffin, D. P., and Lauenroth, W. K.: 1996, ‘An Individual-Based Model of Alpine Plant Distribution’, Ecol. Modelling 84, 99–126.

    Google Scholar 

  • Hurtt, G. C., Moorcroft, P. R., Picala, S. W., and Levin, S. A.: 1998, ‘Terrestrial Models and Global Change: Challenges for the Future’, Global Change Biol. 4, 581–590.

    Google Scholar 

  • Jackson, R. B., Canadell, J., Ehleringer, J. R., Mooney, H. A., Sala, O. E., and Schulze, E.-D.: 1996, ‘A Global Analysis of Root Distribution for Terrestrial Biomes’, Oecologia 108,389–411.

    Google Scholar 

  • Jackson, R. B., Mooney, H. A., and Schulze, E.-D.: 1997, ‘A Global Budget for Fine Root Biomass, Surface Area, and Nutrient Contents’, Proc. Nat. Acad. Sci. 94, 7362–7366.

    Google Scholar 

  • Jackson, R. B., Schenck, H. J., Jobbagy, E. G., Canadell, J., Colello, G. D., Dickinson, R. E., Field, C. B., Friedlingstein, P., Heimann, M., Hibbard, K., Kicklighter, D. W., Kleidon, A., Neilson, R. P., Parton, W. J., Sala, O. E., and Sykes, M. T.: 2000, ‘Belowground Consequences of Vegetation Change and their Treatment in Models’, Ecol. Appl. 10, 470–483.

    Google Scholar 

  • Kattenberg, A. et al.: 1996, ‘Climate Models – Projections of Future Climate’, in Houghton, J. T., et al. (eds.), Climate Change 1995. The Science of Climate Change, pp. 285–357.

  • Keane, R. E., Morgan, P., and Running, S. W.: 1996 ‘Fire-BGC – A Mechanistic Ecological Process Model for Simulating Fire S uccession on Coniferous Forest Landscapes of the Northern Rocky Mountains’, USDA Forest Service, Intermountain Research Station, p. 122.

  • Keane, R. E., Austin, M., Field, C., Huth, A., Lexer, M. J., Peters, D., Solomon, A., and Wyckoff, P.: 2001, ‘Tree Mortality in Gap Models: Application to Climate Change’, Clim. Change 51, 509–540.

    Google Scholar 

  • King, A. W., Post, W. M., and Wullschleger, S. D.: ‘The Potential Response of Terrestrial Carbon Storage to Changes in Climate and Atmospheric CO2’, Clim. Change 35, 199–227.

  • Kleidon, A. and Heimann, M.: 1998, ‘A Method of Determining Rooting Depth from a Terrestrial Biosphere Model and its Impact on the GlobalWater and Carbon Cycle’, Global Change Biol. 4, 275–286.

    Google Scholar 

  • Leishman, M. R., Hughes, L., French, K., Armstrong, D., and Westoby, M.: 1992, ‘Seed and Seedling Biology in Relation to Modelling Vegetation Dynamics Under Global Climate Change’, Aust. J. Bot. 40, 599–613.

    Google Scholar 

  • Linder, C. R., Moore, L. A., and Jackson, R. B.: 2000, ‘A UniversalMolecularMethod for Identifying Underground Plant Parts to Species’, Molecular Ecol. 9, 1549–1559.

    Google Scholar 

  • Livingston, N. J. and Black, T. A.: 1987, ‘Water-Stress and Survival of 3 Species of Conifer Seedlings Planted on a High Elevation South-Facing Clear-Cut’, Can. J. For. Res. 17, 1115–1123.

    Google Scholar 

  • Luo, Y., Field, C. B., and Mooney, H.A.: 1994, ‘Predicting Responses of Photosynthesis and Root Fraction to Elevated CO2: Interactions Among Carbon, Nitrogen, and Growth’, Plant Cell Environ. 17, 1194–1205.

    Google Scholar 

  • Martin, P. H.: 1992, ‘EXE: A Climatically Sensitive Model to Study Climate Change and CO2 Enrichment Effects on Forests’, Aust. J. Bot. 40, 717–735.

    Google Scholar 

  • Mauchamp, A., Rambal, S., and Lepart, J.: 1994, ‘Simulation Dynamics of a Vegetation Mosaics: A Spatialized Functional Model’, Ecol. Modelling 71, 107–130.

    Google Scholar 

  • Melillo, J. M., Aber, J. D., and Muratore, J. F.: 1982, ‘Nitrogen and Lignin Control of Hardwood Leaf Litter Decomposition Dynamics’, Ecology 63, 621–626.

    Google Scholar 

  • Mouillot, F., Rambal, S., and Lavorel, S.: 2001, ‘A Generic Process-Based Simulator for Mediterranean Landscapes (SIERRA): Design and Validation Exercises’, Forest Ecol. Manage. 147, 75–97.

    Google Scholar 

  • Neilson, R. P. and Drapek, R. J.: 1998, ‘Potentially Complex Biospheric Responses to Transient Global Warming’, Global Change Biol. 4, 505–521.

    Google Scholar 

  • Norby, R. J. and Cotrufo, M. F.: 1998, ‘A Question of Litter Quality’, Nature 396, 17–18.

    Google Scholar 

  • Norby, R. J., Ogle, K., Curtis, P. S., Badeck, F.W., Huth, A., Hurtt, G. C., Kohyama, T., and Peñuelas, J.: 2001, ‘Aboveground Growth and Competition in Forest Gap Models: An Analysis for Studies of Climatic Change’, Clim. Change 51, 415–447.

    Google Scholar 

  • Oeschger, H., Siegenthaler, U., Schotterer, U., and Gugelmann, A.: 1975, ‘A Box Diffusion Model to Study the Carbon Dioxide Exchange in Nature’, Tellus 27, 168–192.

    Google Scholar 

  • Oja, T. and Arp, P. A.: 1996, ‘Nutrient Cycling and Biomass Growth at a North American Hardwood Site in Relation to Climate Change: FORSVA Assessments’, Clim. Change 34,239–251.

    Google Scholar 

  • Oliver, C. D. and Larson, B. V.: 1996, Forest Stand Dynamics, John Wiley and Sons, New York, p. 520.

    Google Scholar 

  • Pacala, S. W., Canham, C. D., and Silander, J. A.: 1993, ‘Forest Models Defined by Field-Measurements. 1. The Design of a Northeastern Forest Simulator’, Can. J. For. Res. 23, 1980–1988.

    Google Scholar 

  • Pan, Y. D., Melillo, J. M., McGuire, A. D., Kicklighter, D. W., Pitelka, L. F., Hibbard, K., Pierce, L. L., Running, S.W., Ojima, D. S., Parton, W. J., and Schimel, D. S.: 1998, ‘Modeled Responses of Terrestrial Ecosystems to Elevated Atmospheric CO2: A Comparison of Simulations by the Biogeochemistry Models of the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP)’, Oecologia 11, 389–404.

    Google Scholar 

  • Pastor, J. and Post, W. M.: 1986, ‘Influence of Climate, Soil-Moisture, and Succession on Forest Carbon and Nitrogen Cycles’, Biogeochemistry 2, 3–27.

    Google Scholar 

  • Pastor, J. and Post, W. M.: 1988, ‘Response of Northern Forests to CO2-Induced Climate Change’, Nature 334,55–58.

    Google Scholar 

  • Peñuelas, J. and Estiarte, M.: 1998, ‘Can Elevated CO2 Affect Secondary Metabolism and Ecosystem Function?’, TREE 13, 20–24.

    Google Scholar 

  • Post, W. M. and Pastor, J.: 1996, ‘LINKAGES – An Individual-Based Forest Ecosystem Model’, Clim. Change 34, 253–261.

    Google Scholar 

  • Potter, C. S., Davidson, E. A., Klooster, S. A., Nepsted, D. C., de Negreiros, G. H., and Brooks, V.: 1998, ‘Regional Application of an Ecosystem Production Model for Studies of Biogeochemistry in Brazilian Amazonia’, Global Change Biol. 4, 315–333.

    Google Scholar 

  • Price, D. T., Zimmermann, N. E., van der Meer, P. J., Lexer, M. J., Leadley, P., Jorritsma, I. T. M.

  • Schaber, J., Clark, D. F., Lasch, P., McNulty, S., Wu, J., and Smith, B.: 2001, ‘Regeneration in Gap Models: Priority Issues for Studying Forest Response to Climate Change’, Clim. Change 51, 475–508.

    Google Scholar 

  • Rastetter, E. B.: 1996, ‘Validating Models of Ecosystem Response to Global Change’, BioScience 46, 190–198.

    Google Scholar 

  • Rastetter, E. B., Ryan, M. G., Shaver, G. R., Melillo, J. M., Nadelhoffer, K., Hobbie, J. E., and Aber, J. D.: 1991, ‘A General Biogeochemical Model Describing the Responses of the C and N Cycles in Terrestrial Ecosystems to Changes in CO2, Climate and N Deposition’, Tree Physiol. 9, 101–126.

    Google Scholar 

  • Reich, P. B., Grigal, D. F., Aber, J. D., and Gower, S. T.: 1997, ‘Nitrogen Mineralization and Productivity in 50 Hardwood and Conifer Stands on Diverse Soils’, Ecology 78, 335–347.

    Google Scholar 

  • Reynolds, J. F. and Chen, J. L.: 1996, ‘Modelling Whole-Plant Allocation in Relation to Carbon and Nitrogen Supply: Coordination Versus Optimization: Opinion’, Plant and Soil 186, 65–74.

    Google Scholar 

  • Running, S. W.: 1984, ‘Microclimate Control of Forest Productivity: Analysis by Computer Simulations of Annual Photosynthesis/Transpiration Balance in Different Environments’, Agric. For. Meteorol. 32, 267–288.

    Google Scholar 

  • Running, S. W. and Coughlan, J. C.: 1988, ‘A General Model of Forest Ecosystem Processes for Regional Applications. I. Hydrological Balance, Canopy Gas Exchange and Primary Production’, Ecol. Modelling 42, 125–154.

    Google Scholar 

  • Running, S. W. and Gower, S. T.: 1991, ‘FOREST-BGC: A General Model of Forest Ecosystem Processes for Regional Applications: II. Dynamic Carbon Allocation and Nutrient Budgets’, Tree Physiol. 9, 147–160.

    Google Scholar 

  • Schulze, E. D., Mooney, H. A., Sala, O. E., Jobbagy, E., Buchman, N., Bauer, G., Canadell, J., Jackson, R. B., Loreti, J., Oesterheld, M., and Ehleringer, J. R.: 1996, ‘Rooting Depth, Water Availability, and Vegetation Cover Along an Aridity Gradient in Patagonia’, Oecologia 108, 503–511.

    Google Scholar 

  • Sellers, P. J., Mintz, Y., Sud, Y. C., and Dalcher, A.: 1986, ‘A Simple Biosphere Model (SiB) for Use Within General Circulation Models’, J. Atmos. Sci. 43, 505–531.

    Google Scholar 

  • Shao, G., Bugmann, H., and Yan, X.: 2001, ‘A Comparative Analysis of the Structure and Behavior of Three Gap Models at Sites in Northeastern China’, Clim. Change 51, 389–413.

    Google Scholar 

  • Shugart, H. H. and Smith, T. M.: 1996, ‘A Review of Forest Patch Models and their Application to Global Change Research’, Clim. Change 34, 131–153.

    Google Scholar 

  • Shugart, H. H. and West, D. C.: 1977, ‘Development of an Appalachian Deciduous Forest Succession Model and its Application to Assessment of the Impact of the Chestnut Blight’, J. Environ. Manage. 5, 161–179.

    Google Scholar 

  • Shugart, H. H., Smith, T. M., and Post, W. M.: 1992, ‘The Potential for Application of Individual-Based Simulation Models for Assessing the Effects of Global Change’, Annu. Rev. Ecol. Syst. 23, 15–38.

    Google Scholar 

  • Shuttleworth, W. J. and Wallace, J. S.: 1985, ‘Evaporation from Sparse Crops-An Energy Combination Theory’, Quart. J. R. Met. Soc. 111, 839–855.

    Google Scholar 

  • Snyder, K. A. and Williams, D. G.: 2000, ‘Water Sources Used by Riparian Trees Varies among Stream Types on the San Pedro River, Arizona’, Agricul. For. Meteorol. 105, 227–240.

    Google Scholar 

  • Stakhiv, E. Z. and Major, D. C.: 1997, ‘Ecosystem Evaluation, Climate Change and Water Resources Planning’, Clim. Change 34, 167–177.

    Google Scholar 

  • Stitt, M.: 1991, ‘Rising CO2 Levels and their Potential Significance for Carbon Flow in Photosynthetic Cell’, Plant Cell Environ. 14, 741–762.

    Google Scholar 

  • Thornley, J. H. M.: 1972, ‘A Model to Describe the Partitioning of Photosynthate during Vegetative Plant Growth’, Ann. Bot. 36, 419–430.

    Google Scholar 

  • Thornthwaite, C. W. and Mather, J. R.: 1957, ‘Instructions and Tables for Computing Potential Evapotranspiration and the Water Balance’, Publ. Climatol. 10, 183–311.

    Google Scholar 

  • Trabaud, L., Michels, C., and Grosman, J.: 1985, ‘Recovery of Burnt Pinus halepensisMill. Forests. II. Pine Reconstitution after Wildfire’, For. Ecol. Manage. 13, 137–179.

    Google Scholar 

  • Tyler, C. M.: 1995, ‘Factors Contributing to Postfire Seedling Establishment in Chaparral: Direct and Indirect Effects of Fire’, J. Ecol. 83, 1009–1020.

    Google Scholar 

  • VEMAP members: 1995, ‘Vegetation Ecosystem Modeling and Analysis Project – Comparing Biogeography and Biogeochemistry Models in a Continental-Scale Study of Terrestrial Ecosystem Responses to Climate Change and CO2 Doubling’, Global Biogeochem. Cycles 9, 407–437.

    Google Scholar 

  • Vitousek, P. M. and Howarth, R. W.: 1991, ‘Nitrogen Limitation on Land and Sea – How Can It Occur’, Biogeochemistry 1,87–115.

    Google Scholar 

  • Weltzin, J. F. and McPherson, G. R.: 2000, ‘Implications of Precipitation Redistribution for Shifts in Temperate Savanna Ecotones’, Ecology 81, 1902–1913.

    Google Scholar 

  • Weltzin, J. F. and McPherson, G. R.: 1997, ‘Spatial and Temporal Soil Moisture Resource Partitioning by Trees and Grasses in a Temperate Savanna, Arizona, U.S.A.’, Oecologia 112, 156–164.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wullschleger, S.D., Jackson, R.B., Currie, W.S. et al. Below-Ground Processes in Gap Models for Simulating Forest Response to Global Change. Climatic Change 51, 449–473 (2001). https://doi.org/10.1023/A:1012570821241

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012570821241

Keywords

Navigation