Skip to main content
Log in

On Affine Equivariant Multivariate Quantiles

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

An extension of univariate quantiles in the multivariate set-up has been proposed and studied. The proposed approach is affine equivariant, and it is based on an adaptive transformation retransformation procedure. Behadur type linear representations of the proposed quantiles are established and consequently asymptotic distributions are also derived. As applications of these multivariate quantiles, we develop some affine equivariant quantile contour plots which can be used to study the geometry of the data cloud as well as the underlying probability distribution and to detect outliers. These quantiles can also be used to construct affine invariant versions of multivariate Q-Q plots which are useful in checking how well a given multivariate probability distribution fits the data and for comparing the distributions of two data sets. We illustrate these applications with some simulated and real data sets. We also indicate a way of extending the notion of univariate L-estimates and trimmed means in the multivariate set-up using these affine equivariant quantiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Babu, G. J. and Rao, C. R. (1988). Joint asymptotic distribution of marginal quantile functions in samples from a multivariate population, J. Multivariate Anal., 27, 15-23.

    Google Scholar 

  • Bahadur, R. R. (1966). A note on quantiles in large samples, Ann. Math. Statist., 37, 577-580.

    Google Scholar 

  • Barnett, V. (1976). The ordering of multivariate data (with discussion), J. Roy. Statist. Soc. Ser. A, 139, 318-354.

    Google Scholar 

  • Bedall, F. K. and Zimmermann, H. (1979). AS143: The mediancenter, Applied Statistics, 28, 325-328.

    Google Scholar 

  • Brown, B. M. (1983). Statistical use of the spatial median, J. Roy. Statist. Soc. Ser. B, 45, 25-30.

    Google Scholar 

  • Brown, B. M. and Hettmansperger, T. P. (1987). Affine invariant rank methods in the bivariate location model, J. Roy. Statist. Soc. Ser. B, 49, 301-310.

    Google Scholar 

  • Brown, B. M. and Hettmansperger, T. P. (1989). An affine invariant bivariate version of the sign test, J. Roy. Statist. Soc. Ser. B, 51, 117-125.

    Google Scholar 

  • Chakraborty, B. and Chaudhuri, P. (1996). On a transformation and re-transformation technique for constructing affine equivariant multivariate median, Proc. Amer. Math. Soc., 124, 2539-2547.

    Google Scholar 

  • Chakraborty, B. and Chaudhuri, P. (1997). On multivariate rank regression, L 1-Statistical Procedures and Related Topics (ed. Y. Dodge), IMS Lecture Notes-Monograph Series, Vol. 31, 399-414, Hayward, California.

    Google Scholar 

  • Chakraborty, B., and Chaudhuri, P. (1998). On an adaptive transformation retransformation estimate of multivariate location, J. Roy. Statist. Soc. Ser. B, 60, 145-157.

    Google Scholar 

  • Chakraborty, B. and Chaudhuri, P. (1999). On affine equivariant sign and rank tests in one and two sample multivariate problems, Multivariate Analysis, Design of Experiments and Survey Sampling (ed. S. Ghosh), 499-522, Marcel Dekker, New York.

    Google Scholar 

  • Chakraborty, B., Chaudhuri, P. and Oja, H. (1998). Operating transformation retransformation on spatial median and angle test, Statist. Sinica, 8, 767-784.

    Google Scholar 

  • Chaudhuri, P. (1992). Multivariate location estimation using extension of R-estimates through U-statistics type approach, Ann. Statist., 20, 897-916.

    Google Scholar 

  • Chaudhuri, P. (1996). On a geometric notion of quantiles for multivariate data, J. Amer. Statist. Assoc., 91, 862-872.

    Google Scholar 

  • Chaudhuri, P. and Sengupta, D. (1993). Sign tests in multidimension: Inference based on the geometry of the data cloud, J. Amer. Statist. Assoc., 88, 1363-1370.

    Google Scholar 

  • Davies, P. L. (1987), Asymptotic behavior of S-estimates of multivariate location parameters and dispersion matrices, Ann. Statist., 15, 1269-1292.

    Google Scholar 

  • Donoho, D. L. and Gasko, M. (1992). Breakdown properties of location estimates based on halfspace depth and projected outlyingness, Ann. Statist., 20, 1803-1827.

    Google Scholar 

  • Eddy, W. F. (1983). Set valued ordering of bivariate data, Stochastic Geometry, Geometric Statistics, and Stereology (eds. R. V. Ambartsumian and W. Weil), 79-90, Leipzig, Tuebner.

    Google Scholar 

  • Eddy, W. F. (1985). Ordering of multivariate data, Computer Science and Statistics: The Interface (ed. L. Billard), 25-30, Amsterdam, North-Holland.

    Google Scholar 

  • Gordaliza, A. (1991). On the breakdown point of multivariate location estimators based on trimming procedures, Statist. Probab. Lett., 11, 387-394.

    Google Scholar 

  • Gower, J. C. (1974). The mediancenter, J. Roy. Statist. Soc. Ser. C, 23, 466-470.

    Google Scholar 

  • Isogai, T. (1985). Some extension of Haldane's multivariate median and its application, Ann. Inst. Statist. Math., 37, 289-301.

    Google Scholar 

  • Jan, S. L. and Randles, R. H. (1994). A multivariate signed sum test for the one sample location problem, J. Nonparametr. Statist., 4, 49-63.

    Google Scholar 

  • Kemperman, J. H. B. (1987). The median of a finite measure on a Banach space, Statistical Data Analysis Based on L 1 norm and Related Methods (ed. Y. Dodge), 217-230, Amsterdam, North-Holland.

    Google Scholar 

  • Koltchinskii, V. (1997). M-Estimation, convexity and quantiles, Ann. Statist., 25, 435-477.

    Google Scholar 

  • Liu, R. Y. (1990). On a notion of data depth based on random simplices, Ann. Statist., 18, 405-414.

    Google Scholar 

  • Marden, J. (1998). Bivariate Q-Q plots and spider webplots, Statist. Sinica, 8, 813-826.

    Google Scholar 

  • Möttönen, J. and Oja, H. (1995). Multivariate spatial sign and rank methods, J. Nonparametr. Statist., 5, 201-213.

    Google Scholar 

  • Möttönen, J., Oja, H. and Tienari, J. (1997). On the efficiency of multivariate spatial sign and rank tests, Ann. Statist., 25, 542-552.

    Google Scholar 

  • Nolan, D. (1992). Asymptotics for multivariate trimming, Stochastic Process. Appl., 42, 157-169.

    Google Scholar 

  • Oja, H. (1983). Descriptive statistics for multivariate distributions, Statist. Probab. Lett., 1, 327-332.

    Google Scholar 

  • Plackett, R. L. (1976). Comment on “The ordering of multivariate data”, by V. Barnett, J. Roy. Statist. Soc. Ser. A, 139, 344-346.

  • Rao, C. R. (1988). Methodology based on the L 1-norm in statistical inference, Sankhyā Ser. A, 50, 289-313.

    Google Scholar 

  • Reaven, G. M. and Miller, R. G. (1979). An attempt to define the nature of chemical diabetes using a multidimensional analysis, Diabetologia, 16, 17-24.

    Google Scholar 

  • Reiss, R. D. (1989). Approximate Distributions of Order Statistics with Applications to Nonparametric Statistics, Springer, New York.

    Google Scholar 

  • Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics, Wiley, New York.

    Google Scholar 

  • Tukey, J. W. (1975). Mathematics and the picturing of data, Proc. of the International Congress of Mathematicians, Vancouver 1974 (ed. R. D. James), Vol. 2, 523-531, Canadian mathematical Congress.

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Chakraborty, B. On Affine Equivariant Multivariate Quantiles. Annals of the Institute of Statistical Mathematics 53, 380–403 (2001). https://doi.org/10.1023/A:1012478908041

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012478908041

Navigation