Skip to main content
Log in

A Legacy Recalled and a Tradition Continued

  • Published:
Journal of Automated Reasoning Aims and scope Submit manuscript

Abstract

Since the first presentation of classical sentential logic as an axiomatic system by Frege in 1879, the study of a variety of sentential calculi has flourished. One major area of investigation, initiated by Łukasiewicz and his colleagues in the first half of the twentieth century and carried into the second half by Meredith, Thomas, Prior, et al., focuses on alternative axiom sets for such logics, and on formal proofs within them. This paper recalls a sampling of the results obtained heretofore, noting along the way how the papers in this special issue of the Journal of Automated Reasoning fit into that larger tradition of which they now form a part. It also suggests a number of further questions, open problems, and projects to which the methods developed in these papers seem ideally suited and might well be fruitfully applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, A. R. and Belnap, N. D., Jr.: Entailment: The Logic of Relevance and Necessity, Vol. 1, Princeton University Press, Princeton, 1975.

    Google Scholar 

  2. Beavers, G.: Distribution in Łukasiewicz logics, Bull. Sect. Logic 21 (1992), 140-146.

    Google Scholar 

  3. Borokowski, L. (ed.): Jan Łukasiewicz: Selected Works, North-Holland, Amsterdam, 1970.

    Google Scholar 

  4. Chang, C. C.: Proof of an axiom of Łukasiewicz, Trans. Amer. Math. Soc. 87 (1958), 55-56.

    Google Scholar 

  5. Church, A.: Introduction to Mathematical Logic, Princeton University Press, Princeton, 1956.

    Google Scholar 

  6. Diamond, A. H., and McKinsey, J. C. C.: Algebras and their subalgebras, Bull. Amer. Math. Soc. 53 (1947), 959-962.

    Google Scholar 

  7. Fitelson, B. and Wos, L.: Missing proofs found, J. Automated Reasoning, this issue.

  8. Frege, G.: Begriffsschrift, eine der arithmetischen nachgebildete Formalsprache des reinen Denkens, Nebert, Halle, 1879.

    Google Scholar 

  9. Harris, K. and Fitelson, B.: Distributivity in Ł\(_{\aleph_0}\) and other sentential logics, J. Automated Reasoning, this issue.

  10. Heyting, A.: Die formalen Regeln der intuitionistischen Logik, Sitzungsberichte der Preussischen Akademie der Wissenschaften, Phys.-math. Klasse, 1930, 42-56.

  11. Hilbert, D. and Bernays, P.: Gründlagen der Mathematik, Vol. 1, Berlin, 1934.

  12. Hindley, J. R. and Meredith, D.: Principal type-schemes and condensed detachment, J. Symbolic Logic 55 (1990), 90-105.

    Google Scholar 

  13. Hughes, G. E. and Cresswell, M. J.: A New Introduction to Modal Logic, Routledge, New York, 1996.

    Google Scholar 

  14. Jaskowski, S.: Trois contributions au calcul des propositions bivalent, Studia Societatis Scientiarum Toruniensis, Section A 1 (1948), 1-15.

    Google Scholar 

  15. Kalman, J. A.: Substitution-and-detachment systems related to Abelian groups, in A Spectrum of Mathematics, Essays Presented to H. G. Fodor, Auckland University Press, Auckland, 1971, pp. 22-31.

    Google Scholar 

  16. Kalman, J. A.: Condensed detachment as a rule of inference, Studia Logica 42 (1983), 443-451.

    Google Scholar 

  17. Kneale, W. and Kneale, M.: The Development of Logic, Clarendon Press, Oxford, 1962.

    Google Scholar 

  18. Lemmon, E. J., Meredith, C. A., Meredith, D., Prior, A. N., and Thomas, I.: Calculi of pure strict implication, mimeographed, Canterbury University College, 1957. Reprinted in J. W. Davis, D. J. Hockney, and W. K. Wilson (eds.), Philosophical Logic, Reidel, Dordrecht, 1969, pp. 215-250.

    Google Scholar 

  19. Lésniewski, S.: Grundzüge eines neuen Systems der Grundlagen der Mathematik, Fund. Math. 14 (1929), 15-30.

    Google Scholar 

  20. Lewis, C. I. and Langford, C. H.: Symbolic Logic, Century, New York, 1932.

    Google Scholar 

  21. Littlewood, J. E.: A Mathematician's Miscellany, Methuen, London, 1953.

    Google Scholar 

  22. Łukasiewicz, J.: A numerical interpretation of the theory of propositions, in [3], pp. 129-130.

  23. Łukasiewicz, J.: Elementary logiki matematycznej, mimeographed, Warsaw, 1929. Published Warsaw, 1958. English translation by O. Wojtasiewicz, McMillan, New York, 1963.

  24. Łukasiewicz, J.: Z historii logiki zdán, Przegl¸ad Filozoficzny 37 (1934), 413-437. English translation in [28], pp. 66-87; also in [3], pp. 197-217.

    Google Scholar 

  25. Łukasiewicz, J.: Logistyka a filozofia, Przegl¸ad Filozoficzny 39 (1936), 115-131. English translation in [3], pp. 218-235.

    Google Scholar 

  26. Łukasiewicz, J.: Der Äequivalenzenkalkül, Collectanea Logica 1 (1939), 145-169. English translation in [28], pp. 88-115; also in [3], pp. 256-277.

    Google Scholar 

  27. Łukasiewicz, J.: The shortest axiom of the implicational calculus of propositions, Proc. Roy. Irish Acad., Section A 52 (1948), 25-33. Also in [3], pp. 295-305.

    Google Scholar 

  28. McCall, S. (ed.): Polish Logic, 1920-1939, Clarendon Press, Oxford, 1967.

    Google Scholar 

  29. Mendelson, E.: Introduction to Mathematical Logic, van Nostrand, Princeton, 1964.

    Google Scholar 

  30. Meredith, C. A.: Single axioms for the systems (C, N), (C, 0) and (A, N) of the two-valued propositional calculus, J. Comput. Systems 1 (1953), 155-164.

    Google Scholar 

  31. Meredith, C. A.: A single axiom of positive logic, J. Comput. Systems 1 (1953), 169-170.

    Google Scholar 

  32. Meredith, C. A.: The dependence of an axiom of Łukasiewicz, Trans. Amer. Math. Soc. 87 (1958), 54.

    Google Scholar 

  33. Meredith, D.: In memoriam: Carew Arthur Meredith (1904-1976), Notre Dame J. Formal Logic 18 (1977), 513-516.

    Google Scholar 

  34. Meyer, R. K., Bunder, M. W., and Powers, L.: Implementing the 'fool's model' of combinatory logic, J. Automated Reasoning 7 (1991), 595-629.

    Google Scholar 

  35. Nicod, J. G. P.: A reduction in the number of the primitive propositions of logic, Proc. Cambridge Philos. Soc. 19 (1917), 32-41.

    Google Scholar 

  36. Peterson, J. G.: The possible shortest single axioms for EC-tautologies, Report 105, Department of Mathematics, University of Auckland, 1977.

  37. Post, E. L.: Introduction to a general theory of elementary propositions, Amer. J. Math. 43 (1921), 173-185.

    Google Scholar 

  38. Prior, A. N.: Logicians at play; or Syll, Simp and Hilbert, Australas. J. Philos. 34 (1956), 182-192.

    Google Scholar 

  39. Prior, A. N.: Formal Logic, 2nd edn, Clarendon Press, Oxford, 1962.

    Google Scholar 

  40. Prior, A. N. and Meredith, C. A.: Notes on the axiomatics of the propositional calculus, Notre Dame J. Formal Logic 4 (1963), 171-187.

    Google Scholar 

  41. Prior, A. N. and Meredith, C. A.: Equational logic, Notre Dame J. Formal Logic 9 (1968), 212-226.

    Google Scholar 

  42. Reeves, C. R.: Modern Heuristic Techniques for Combinatorial Problems, Wiley, New York, 1993.

    Google Scholar 

  43. Rezus, A.: On a theorem of Tarski, Libertas Math. 2 (1982), 63-97.

    Google Scholar 

  44. Rickey, V. F.: The one variable implicational calculus, Notre Dame J. Formal Logic 15 (1974), 478-480.

    Google Scholar 

  45. Robinson, J. A.: A machine-oriented logic based on the resolution principle, J. Assoc. Comput.Mach. 12 (1965), 23-41.

    Google Scholar 

  46. Scharle, T. W.: Axiomatization of propositional calculus with Sheffer functors, Notre Dame J. Formal Logic 6 (1965), 209-217.

    Google Scholar 

  47. Scharle, T. W.: Single axiom schemata for D and S, Notre Dame J. Formal Logic 7 (1966), 344-348.

    Google Scholar 

  48. Singletary, W. E.: Results regarding the axiomatization of partial propositional calculi, Notre Dame J. Formal Logic 9 (1968), 193-211.

    Google Scholar 

  49. Sobociński, B.: Note on a problem of Paul Bernays, J. Symbolic Logic 20 (1955), 109-114.

    Google Scholar 

  50. Surma, S. (ed.): Mordchaj Wajsberg: Logical Works, Polish Academy of Sciences, Wrocław, 1977.

    Google Scholar 

  51. Tarski, A.: Logic, Semantics, Metamathematics, translated by J. H. Woodger, Clarendon Press, Oxford, 1956.

    Google Scholar 

  52. Thomas, I.: Final word on a shortest implicational axiom, Notre Dame J. Formal Logic 11 (1970), 16.

    Google Scholar 

  53. Thomas, I.: Shorter development of an axiom, Notre Dame J. Formal Logic 16 (1975), 378.

    Google Scholar 

  54. Thomas, I.: Nice implicational axioms, Notre Dame J. Formal Logic 16 (1975), 507-508.

    Google Scholar 

  55. Tursman, R.: The shortest axioms of the implicational calculus, Notre Dame J. Formal Logic 9 (1968), 351-358.

    Google Scholar 

  56. Ulrich, D.: A five-valued model of the E-p-q theses, Notre Dame J. Formal Logic 29 (1988), 137-138.

    Google Scholar 

  57. Ulrich, D.: The shortest possible length of the longest implicational axiom, J. Philos. Logic 25 (1996), 101-108.

    Google Scholar 

  58. Ulrich, D.: New single axioms for positive implication, Bull. Sect. Logic 28 (1999), 39-42.

    Google Scholar 

  59. Veroff, R.: Finding shortest proofs: An application of linked inference rules, J. Automated Reasoning, this issue.

  60. Veroff, R.: Solving open questions and other challenge problems using proof sketches, J. Automated Reasoning, this issue.

  61. Wajsberg, M.: Aksjomatyzacja trójwartościowego rachunku zdań, Comptes rendus des séances de la Société des Sciences et des Lettres de Varsovie, Cl. iii 24 (1931), 126-145. English translation in [28], pp. 264-284; also in [50], pp. 12-29.

    Google Scholar 

  62. Wajsberg, M.: Ein neues Axiom des Aussgenkalküls in der Symbolik von Sheffer, Monatsh. Math. Phys. 39 (1932), 259-262. English translation in [50], pp. 37-39.

    Google Scholar 

  63. Wajsberg, M.: Metalogische Beiträge, Wiadomo´sci Matematyczne 43 (1937), 131-168. English translation in [28], pp. 285-318; also in [50], pp. 172-200.

    Google Scholar 

  64. Wajsberg, M.: Metalogische Beiträge II, Wiadom. Mat. 47 (1939), 119-139. English translation in [28], pp. 319-334; also in [50], pp. 201-214.

    Google Scholar 

  65. Whitehead, A. N. and Russell, B.: Principia Mathematica, Vol. 1, Cambridge University Press, Cambridge, 1913.

    Google Scholar 

  66. Wójcicki, R. (ed.): Selected Papers on Łukasiewicz Sentential Calculi, Polish Academy of Sciences, Wrocław, 1977.

    Google Scholar 

  67. Wos, L.: A milestone reached and a secret revealed, J. Automated Reasoning, this issue.

  68. Wos, L.: Conquering the Meredith single axiom, J. Automated Reasoning, this issue.

  69. Wos, L., Winker, S., Veroff, R., Smith, B., and Henschen, L.: Questions concerning possible shortest single axioms for the equivalential calculus: An application of automated theorem proving in infinite domains, Notre Dame J. Formal Logic 24 (1983), 205-223.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ulrich, D. A Legacy Recalled and a Tradition Continued. Journal of Automated Reasoning 27, 97–122 (2001). https://doi.org/10.1023/A:1010683508225

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010683508225

Navigation