Skip to main content
Log in

Irreversibility in a Reversible Lattice Gas

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A simple lattice gas model, a microscopically reversible cellular automaton, is described and shown to exhibit thermodynamic irreversibility in processes similar to those in real gases. The model, which has no random elements, develops a long-lasting equilibrium state within a Poincaré cycle. This state is an attractor resulting from the nonlinear nature of the collective particle collisions and motions. The results illustrate how the Second Law of Thermodynamics applies to real systems governed by reversible microscopic dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. Sklar, Introduction to Physics and Chance, Philosophical Issues in the Foundations of Statistical Mechanics (Cambridge University Press, Cambridge, 1993).

    Google Scholar 

  2. R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics, Vol. 1 (Addison–Wesley, Reading, Mass., 1963).

    Google Scholar 

  3. L. D. Landau and E. M. Lifshitz, Statistical Physics (Pergamon Press, Addison–Wesley, Reading, MA, 1958).

    Google Scholar 

  4. R. Penrose, Singularities and time-asymmetry. General Relativity: An Einstein Centenary, S. W. Hawking and W. Israel (Eds.) (Cambridge University Press, Cambridge, 1979).

    Google Scholar 

  5. J. L. Lebowitz, Macroscopic laws, microscopic dynamics, time's arrow and Boltzmann entropy, Physica A 194:1 (1993).

    Google Scholar 

  6. J. L. Lebowitz, in Lecture Notes in Physics, 25 Years of Non-Equilibrium Statistical Mechanics, Proceedings, Sitges, Barcelona, Spain 1994, J. J. Brey, J. Marro, J. M. Rubi, and M. San Miguel, Eds. (Springer, 1995).

  7. J. L. Lebowitz, Microscopic Origins of Irreversible Macroscopic Behavior, Physica A 263:516 (1999).

    Google Scholar 

  8. L. Boltzmann, On Certain Questions of the Theory of Gases, Nature 51:413 (1895).

    Google Scholar 

  9. L. Boltzmann, Lectures on Gas Theory (University of California Press, Berkeley and Los Angeles, 1964), pp. 442.

    Google Scholar 

  10. P. Ehrenfest and T. Ehrenfest, The Conceptual Foundation of the Statistical Approach in Mechanics (Cornell University Press, Ithaca, New York, 1959).

    Google Scholar 

  11. J. E. Broadwell, Study of rarefied shear flow by the discrete velocity method, J. Fluid Mech. 19:401 (1964).

    Google Scholar 

  12. J. E. Broadwell, Shock structure in a simple discrete velocity gas, Phys. Fluids 7:1243 (1964).

    Google Scholar 

  13. R. E. Caflisch, Navier–Stokes and Boltzmann shock profiles for a model of gas dynamics, Comm. Pure Appl. Math. 32:521 (1979).

    Google Scholar 

  14. H. Cornille, Exact solutions of the Broadwell model in 1+1 dimensions, J. Phys. A: Math. Gen. 20:1973 (1987).

    Google Scholar 

  15. H. Cornille, Positive (2+1)-dimensional exact shock waves solutions to the Broadwell model, J. Math. Phys. 30(4):789 (1989).

    Google Scholar 

  16. J. Hardy and Y. Pomeau, Thermodynamics and Hydrodynamics for a Modeled Fluid, J. Math. Phys. 13:1042 (1972).

    Google Scholar 

  17. J. Hardy, O. de Pazzis, and Y. Pomeau, Molecular dynamics of a classical lattice gas: Transport properties and time correlation functions, Phys. Rev. A 13:1949 (1976).

    Google Scholar 

  18. S. Wolfram, Cellular Automaton Fluids: Basic Theory, J. Stat. Phys. 45:471 (1986).

    Google Scholar 

  19. B. T. Nadiga, J. E. Broadwell, and B. Sturtevant, Study of a Multispeed Cellular Automaton. Rarefied Gas Dynamics: Theoretical and Computational Techniques, E. P. Muntz, D. P. Weaver, and D. H. Campbell, Eds., Vol. 118 (Progress in Astronauts and Aeronautics, AIAA Washington, D. C., 1989).

    Google Scholar 

  20. R. E. Caflisch and G. C. Papanicolaou, The fluid-dynamical limit of a nonlinear model Boltzmann equation, Comm. Pure Appl. Math. 32:589 (1979).

    Google Scholar 

  21. S. K. Godunov and U. M. Sultangazin, On discrete models of the kinetic Boltzmann equation, Uspekhi Mat. Nauk 26:3 (1971). Also Russ. Math. Surv. 26:1 (1971).

    Google Scholar 

  22. S. Caprino, A. DeMasi, E. Presutti, and M. Pulvirenti, A derivation of the Broadwell equation, Comm. in Math. Phys. 135:443 (1991).

    Google Scholar 

  23. K. Uchiyama, On the Boltzmann–Grad Limit for the Broadwell Model of the Boltzmann Equation, J. Stat. Phys. 52:331 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Broadwell, J.E. Irreversibility in a Reversible Lattice Gas. Journal of Statistical Physics 103, 1125–1136 (2001). https://doi.org/10.1023/A:1010373325105

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010373325105

Navigation