Skip to main content
Log in

The Ground State Energy of a Dilute Two-Dimensional Bose Gas

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The ground state energy per particle of a dilute, homogeneous, two-dimensional Bose gas, in the thermodynamic limit is shown rigorously to be E0/N=(2πℏ2ρ/m)|ln(ρa2)|−1, to leading order, with a relative error at most O(|ln(ρa2)|−1/5). Here N is the number of particles, ρ=N/V is the particle density and a is the scattering length of the two-body potential. We assume that the two-body potential is short range and nonnegative. The amusing feature of this result is that, in contrast to the three-dimensional case, the energy, E0 is not simply N(N−1)/2 times the energy of two particles in a large box of volume (area, really) V. It is much larger.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. H. Lieb and J. Yngvason, Ground state energy of the low density Bose gas, Phys. Rev. Lett. 80:2504-2507 (1998). A more leisurely presentation is in Differential Equations and Mathematical Physics, Proceedings of 1999 Conference at the Univ. of Alabama, R. Weikard and G. Weinstein, eds. (International Press, 2000), pp. 295-306.

    Google Scholar 

  2. N. N. Bogolubov, J. Phys. (U.S.S.R.) 11:23 (1947); N. N. Bogolubov and D. N. Zubarev, Sov. Phys.-JETP 1:83 (1955).

    Google Scholar 

  3. M. Schick, Two-dimensional system of hard core bosons, Phys. Rev. A 3:1067-1073 (1971).

    Google Scholar 

  4. D. F. Hines, N. E. Frankel, and D. J. Mitchell, Hard disc Bose gas, Phys. Lett. A 68:12-14 (1978).

    Google Scholar 

  5. V. N. Popov, On the theory of the superfluidity of two-and one-dimensional Bose systems, Theor. and Math. Phys. 11:565-573 (1977).

    Google Scholar 

  6. D. S. Fisher and P. C. Hohenberg, Dilute Bose gas in two dimensions, Phys. Rev. B 37:4936-4943 (1988).

    Google Scholar 

  7. E. H. Lieb, Simplified approach to the ground state energy of an imperfect Bose gas, Phys. Rev. 130:2518-2528 (1963). See also Phys. Rev. A 133:899-906 (1964) (with A. Y. Sakakura) and Phys. Rev. A 134:312-315 (1964) (with W. Liniger).

    Google Scholar 

  8. A. A. Ovchinnikov, On the description of a two-dimensional Bose gas at low densities, J. Phys. Condens. Matter 5:8665-8676 (1993). See also JETP Letters 57:477 (1993); Mod. Phys. Lett. 7:1029 (1993).

    Google Scholar 

  9. E. H. Lieb, R. Seiringer, and J. Yngvason, Bosons in a trap: A rigorous derivation of the Gross-Pitaevskii energy functional, Phys. Rev. A 61:043602 (2000); mp_arc 99-312, xxx e-print archive math-ph/9908027 (1999).

    Google Scholar 

  10. F. J. Dyson, Ground-state energy of a hard-sphere gas, Phys. Rev. 106:20-24 (1957).

    Google Scholar 

  11. F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of Bose-Einstein condensation in trapped gases, Rev. Mod. Phys. 71:463-512 (1999).

    Google Scholar 

  12. G. Temple, The theory of Rayleigh's principle as applied to continuous systems, Proc. Roy. Soc. London A 119:276-293 (1928).

    Google Scholar 

  13. E. H. Lieb and M. Loss, Analysis (Amer. Math. Society, 1997).

  14. L. Spruch and L. Rosenberg, Upper bounds on scattering lengths for static potentials, Phys. Rev. 116:1034 (1959).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lieb, E.H., Yngvason, J. The Ground State Energy of a Dilute Two-Dimensional Bose Gas. Journal of Statistical Physics 103, 509–526 (2001). https://doi.org/10.1023/A:1010337215241

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010337215241

Navigation