Skip to main content
Log in

Directed Percolation with Colors and Flavors

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A model of directed percolation processes with colors and flavors that is equivalent to a population model with many species near their extinction thresholds is presented. We use renormalized field theory and demonstrate that all renormalizations needed for the calculation of the universal scaling behavior near the multicritical point can be gained from the one-species Gribov process (Reggeon field theory). In addition this universal model shows an instability that generically leads to a total asymmetry between each pair of species of a cooperative society, and finally to unidirectionality of the interspecies couplings. It is shown that in general the universal multicritical properties of unidirectionally coupled directed percolation processes with linear coupling can also be described by the model. Consequently the crossover exponent describing the scaling of the linear coupling parameters is given by Φ=1 to all orders of the perturbation expansion. As an example of unidirectionally coupled directed percolation, we discuss the population dynamics of the tournaments of three species with colors of equal flavor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. K. Janssen, Z. Phys. B: Cond. Mat. 42:151 (1981).

    Google Scholar 

  2. P. Grassberger, Z. Phys. B: Cond. Mat. 47:365 (1982).

    Google Scholar 

  3. S. R. Broadbent and J. M. Hammersley, Proc. Camb. Philos. Soc. 53:629 (1957).

    Google Scholar 

  4. J. L. Cardy and R. L. Sugar, J. Phys. A: Math. Gen. 13:L423 (1980).

    Google Scholar 

  5. S. P. Obukhov, Physica A 101:145 (1980).

    Google Scholar 

  6. V. N. Gribov, Sov. Phys. JETP 26:414 (1968); V. N. Gribov and A. A. Migdal, Sov. Phys. JETP 28:784 (1969).

    Google Scholar 

  7. M. Moshe, Phys. Rep. C 37:255 (1978).

    Google Scholar 

  8. P. Grassberger and K. Sundermeyer, Phys. Lett. B 77:220 (1978); P. Grassberger and A. de La Torre, Ann. Phys. (New York), 373 (1979).

    Google Scholar 

  9. T. E. Harris, Ann. Prob. 2:969 (1974).

    Google Scholar 

  10. T. M. Liggett, Interacting Particle Systems (Springer, Berlin, 1985).

    Google Scholar 

  11. I. Jensen and R. Dickman, Physica A 203:175 (1994).

    Google Scholar 

  12. W. Kinzel, in Percolation Structures and Processes, G. Deutsch, R. Zallen, and J. Adler, eds. (Hilger, Bristol, 1983); Z. Phys. B: Cond. Mat. 58:229 (1985).

    Google Scholar 

  13. R. M. Ziff, E. Gulari, and Y. Barshad, Phys. Rev. Lett. 56:2553 (1986).

    Google Scholar 

  14. G. Grinstein, Z.-W. Lai, and D. A. Browne, Phys. Rev. A 40:4820 (1989).

    Google Scholar 

  15. H. Hinrichsen, cond-mat/0001070.

  16. P. Grassberger, Directed percolation: results and open problems, preprint WUB 96-2 (1996), unpublished.

  17. H. Hinrichsen, cond-mat/9910284.

  18. H. K. Janssen, Ü. Kutbay, and K. Oerding, J. Phys. A: Math. Gen. 32:1809 (1999).

    Google Scholar 

  19. H. K. Janssen, Phys. Rev. E 55:6253 (1997).

    Google Scholar 

  20. F. Schlögl, Z. Phys. 225:147 (1972).

    Google Scholar 

  21. M. Doi, J. Phys. A: Math. Gen. 9:1479 (1976); P. Grassberger and P. Scheunert, Fortschr. Phys. 28:547 (1980).

    Google Scholar 

  22. L. Peliti, J. Phys. (France) 46:1469 (1984); B. P. Lee, J. Phys. A: Math. Gen. 27:2633 (1994).

    Google Scholar 

  23. H. K. Janssen, Z. Phys. B: Cond. Mat. 58:311 (1985).

    Google Scholar 

  24. M. J. Howard and U. C. Täuber, J. Phys. A: Math. Gen. 30:7721 (1997).

    Google Scholar 

  25. J. L. Cardy and U. C. Täuber, Phys. Rev. Lett. 77:4783 (1996); J. Stat. Phys. 90:1 (1998).

    Google Scholar 

  26. J. Hofbauer and K. Sigmund, The Theory of Evolution and Dynamical Systems (Cambridge University Press, 1988).

  27. J. D. Murray, Mathematical Biology (Springer, Berlin, 1988).

    Google Scholar 

  28. U. Alon, M. R. Evans, H. Hinrichsen, and D. Mukamel, Phys. Rev. Lett. 76:2746 (1996); Phys. Rev. E 57:4997 (1998).

    Google Scholar 

  29. H. K. Janssen, Phys. Rev. Lett. 78:2890 (1997).

    Google Scholar 

  30. U. C. Täuber, M. J. Howard, and H. Hinrichsen, Phys. Rev. Lett. 80:2165 (1998); Y. Y. Goldschmidt, Phys. Rev. Lett. 81:2178 (1998); Y. Y. Goldschmidt, M. J. Howard, H. Hinrichsen, and U. C. Täuber, Phys. Rev. E 59:6381 (1999).

    Google Scholar 

  31. T. Ohtsuki and T. Keyes, Phys. Rev. A 35:2697 (1987), Phys. Rev. A 36:4434 (1987).

    Google Scholar 

  32. D. J. Amit, Field Theory, the Renormalization Group and Critical Phenomena (World Scientific, Singapore, 1984).

    Google Scholar 

  33. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, 2nd revised edition (Clarendon, Oxford, 1993).

    Google Scholar 

  34. R. Bausch, H. K. Janssen, and H. Wagner, Z. Phys. B: Cond. Mat. 24:113 (1976).

    Google Scholar 

  35. C. De Dominicis and L. Peliti, Phys. Rev. B 18:353 (1978).

    Google Scholar 

  36. H. K. Janssen, in Dynamical Critical Phenomena and Related Topics, Lecture Notes in Physics, Vol. 104, C. P. Enz, ed. (Springer, Heidelberg, 1979).

    Google Scholar 

  37. C. De Dominicis, J. Phys. (France) Colloq. 37:C247 (1976).

    Google Scholar 

  38. H. K. Janssen, Z. Phys. B: Cond. Mat. 23:377 (1976).

    Google Scholar 

  39. H. K. Janssen, in From Phase Transitions to Chaos, G. Györgyi, I. Kondor, L. Sasvári, and T. Tél, eds. (World Scientific, Singapore, 1992).

    Google Scholar 

  40. K. Kawasaki, in Proc. Varenna Summer School on Critical Phenomena, M. S. Green, ed. (Academic, New York, 1971); in Phase Transitions and Critical Phenomena, Vol. 5a, C. Domb and M. S. Green, eds. (Academic, London, 1976).

    Google Scholar 

  41. P. C. Martin, E. D. Siggia, and H. H. Rose, Phys. Rev. A 8:423 (1973).

    Google Scholar 

  42. M. Baker, Phys. Lett. B 51:158 (1974).

    Google Scholar 

  43. J. B. Bronzan and J. W. Dash, Phys. Lett. B 51:496 (1974), Phys. Rev. D 10:4208 (1974), Phys. Rev. D 12:1850 (1974).

    Google Scholar 

  44. F. J. Wegner, J. Phys. C 7:2098 (1974), in Phase Transitions and Critical Phenomena, Vol. 6, C. Domb and M. S. Green, eds. (Academic, New York, 1976).

    Google Scholar 

  45. H. K. Janssen, Z. Phys. B: Cond. Mat. 97:239 (1995).

    Google Scholar 

  46. F. Harary, Graph Theory (Addison-Wesley, 1969).

  47. R. M. May and W. J. Leonard, SIAM J. Appl. Math. 29:243 (1979).

    Google Scholar 

  48. J. Coste, J. Peyraud, and P. Coullet, SIAM J. Appl. Math. 36:516 (1979).

    Google Scholar 

  49. P. Schuster, K. Sigmund, and R. Wolff, SIAM J. Appl. Math. 37:49 (1979).

    Google Scholar 

  50. J. Hofbauer and J. W.-H. So, SIAM Appl. Math. Lett. 7:65 (1994).

    Google Scholar 

  51. S. Cornell, M. Droz, R. Dickman, and M. C. Marques, J. Phys. A: Math. Gen. 24:5605 (1991).

    Google Scholar 

  52. K. E. Bassler and D. A. Brown, Phys. Rev. Lett. 77:4094 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janssen, HK. Directed Percolation with Colors and Flavors. Journal of Statistical Physics 103, 801–839 (2001). https://doi.org/10.1023/A:1010300703724

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010300703724

Navigation