Skip to main content
Log in

Eh ph Diagrams for mn, fe, co, ni, cu and as Under Seawater Conditions: Application of two new Types of eh ph Diagrams to the Study of Specific Problems in Marine Geochemistry

  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

EH pH diagrams have been calculated using the PHREEQC programme in order to establish the predominance fields of Mn, Fe, Co, Ni, Cu and As in bottom waters from the Angola Basin. Predominance fields are presented separately for both aquatic species and solid mineral phases in order to simplify interpretation of the data. The diagrams show significant differences from standard EH pH diagrams for these elements calculated for freshwater at 25 °C and 1 bar which assume an element concentration of 10-6 M. In particular, our diagrams show that Mn2+ and NiCO 03 are the predominant aquatic species for Mn and Ni in bottom seawater and FeOOH, Fe2O3, Fe3O4, CoFe2O4, CuFe2O4, CuFeO2, and Ba3 (AsO4)2 the predominant solid phases for Fe, Co, Cu and As, respectively. Mn and Ni are therefore undersaturated and Fe, Co, Cu and As supersaturated in bottom seawater from the Angola Basin. Neither rhodochrosite (MnCO3) nor siderite (FeCO3) can form in this marine environment in equilibrium with seawater. A mixed Mn-Ca carbonate is therefore formed within the pore waters of reducing sediments. The high Ni/Cu ratios in cobalt-rich manganese crusts formed adjacent to the oxygen minimum zone may be explained by the change from Cu2+ to CuCl 2-3 as the dominant aquatic species of Cu in seawater at an EH of +0.48 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aller, R. C. and Rude, P. D. (1988) Complete oxidation of solid phase sulfides by manganese and bacteria in anoxic marine sediments. Geochim. Cosmochim. Acta 52, 751-765.

    Google Scholar 

  • Aplin, A. C. and Cronan, D. S. (1985) Ferromanganese oxide deposits from the Central Pacific Ocean, I. Encrustations from the Line Islands Archipelago. Geochim. Cosmochim. Acta 49, 427-436.

    Google Scholar 

  • Balistrieri, L. S. and Murray, J. W. (1986) The surface chemistry of sediments from the Panama Basin: The influence of Mn oxides on metal adsorption. Geochim. Cosmochim. Acta 50, 2235-2243.

    Google Scholar 

  • Balzer, W. (1982) On the distribution of iron and manganese at the sediment/water interface: thermodynamic versus kinetic control. Geochim. Cosmochim. Acta 46, 1153-1161.

    Google Scholar 

  • Berner, R. A. (1981) A new geochemical classification of sedimentary environments. J. Sedim. Petrol. 51, 359-365.

    Google Scholar 

  • Binns, R. A., Scott, S. D., Bogdanov, Y. A., Lisitzin, A. P., Gordeev, V. V., Gurvich, E. G., Finlayson, E. J., Boyd, T., Dotter, L. E., Wheller, G. E., and Muravyev, K.G. (1993) Hydothermal oxide and gold-rich sulfate deposits of Franklin Seamount, western Woodlark Basin, Papua New Guinea. Econ. Geol. 88, 2122-2153.

    Google Scholar 

  • Böttcher, M. E. and Huckriede, H. (1997) First occurrence and stable isotopic composition of authigenic γ-MnS in the central Gotland Deep (Baltic Sea). Mar. Geol. 137, 201-205.

    Google Scholar 

  • Böttcher, M. E. (1998) Manganese (II) partitioning during experimental precipitation of rhodochrosite-calcite solid solutions from aqueous solutions. Mar. Chem. 62, 287-297.

    Google Scholar 

  • Bricker, O. P. (1965) Some stability relations in the system MnO2—H2O at 25 °C and one atmosphere total pressure. Am. Mineral. 50, 1296-1354.

    Google Scholar 

  • Brookins, D. G. (1988) Eh, pH Diagrams for Geochemistry. Springer-Verlag, Berlin, 176 pp.

    Google Scholar 

  • Bruland, K.W. (1983) Trace metals in sea-water. In Chemical Oceanography (eds. J. P. Riley and R. Chester), Vol. 8, pp. 157-220. Academic Press, London.

    Google Scholar 

  • Bruland, K. W., Orians, K. J., and Cowen, J. P. (1994) Reactive trace metals in the stratified central North Pacific. Geochim. Cosmochim. Acta 58, 3171-3182.

    Google Scholar 

  • Bruno, J., Wersin, P., and Stumm, W. (1992) On the influence of carbonate in mineral dissolution: II. The solubility of FeCO3(s) at 25 °C and 1 atm total pressure. Geochim. Cosmochim. Acta 56, 1149-1155.

    Google Scholar 

  • Burns, R. G. and Burns, V.M. (1977) Mineralogy. In Marine Manganese Deposits (ed. G. P. Glasby), pp. 185-248. Elsevier, Amsterdam.

    Google Scholar 

  • Burns, R. G. and Burns, V. M. (1979) Manganese oxides. Revs, Mineral. 6, 1-46.

    Google Scholar 

  • Calvert, S. E. and Pedersen, T. F. (1993) Geochemistry of recent oxic and anoxic marine sediments: Implications for the geological record. Mar. Geol. 113, 67-88.

    Google Scholar 

  • Carman, R. and Rahm, L. (1997) Early diagenesis and chemical characteristics of interstitial water and sediments in the deep deposition bottoms of the Baltic proper. J. Sea Res. 37, 25-47.

    Google Scholar 

  • Chen, J.-c. and Yao, Y.-c. (1995) Geochemistry of manganese nodules from offshore areas of Mariana Islands and Johnston Island. J. SE Asian Earth Sci. 11, 61-70.

    Google Scholar 

  • Cosovic, B., Degobbis, D., Bilinski, H., and Branica, M. (1982) Inorganic cobalt species in seawater. Geochim. Cosmochim. Acta 46, 151-158.

    Google Scholar 

  • Crerar, D. A. and Barnes, H. L. (1974) Deposition of deep-sea manganese nodules. Geochim. Cosmochim. Acta 38, 279-300.

    Google Scholar 

  • Crerar, D. A., Cormick, R. K., and Barnes, H. L. (1980) Geochemistry of manganese: An overview. In Geology and Geochemistry of Manganese (eds. I.M. Varentsov and Gy. Grasselly), Vol. 1, pp. 293-334. Hungarian Academy of Sciences, Budapest

    Google Scholar 

  • Crowther, D. L., Dillard, J. G., and Murray, J. W. (1983) The mechanism of Co(II) oxidation in synthetic birnessite. Geochim. Cosmochim. Acta 47, 1399-1403.

    Google Scholar 

  • Curtis, C. D. (1995) Post-depositional evolution of mudstones 1: early days and parental influences. J. Geol. Soc. Lond. 152, 577-586.

    Google Scholar 

  • Davison, W. (1993) Iron and manganese in lakes. Earth-Sci. Revs. 34, 119-163.

    Google Scholar 

  • Dhahar, S. P. and Burdige, D. J. (1996) A coupled non-linear steady state model for early diagenetic processes in pelagic sediments. Am. J. Sci. 296, 296-330.

    Google Scholar 

  • Diem, D. and Stumm, W. (1984) Is dissolved Mn2+ being oxidized by O2 in absence of Mn-bacteria or surface catalysts? Geochim. Cosmochim. Acta 48, 1571-1573.

    Google Scholar 

  • Dillard, J. G., Crowther, D. L., and Murray, J. W. (1982) The oxidation states of cobalt and selected metals in Pacific ferromanganese nodules. Geochim. Cosmochim. Acta 46, 755-759.

    Google Scholar 

  • Dillard, J. G., Crowther, D. L., and Calvert, S. E. (1984) X-ray photoelectron spectrosopic study of ferromanganese nodules: Chemical speciation for selected transition elements. Geochim. Cosmochim. Acta 48, 1565-1569.

    Google Scholar 

  • Dymond, J., Lyle, M., Finney, B., Piper, D. Z., Murphy, K., Conard, R., and Pisias, N. (1984) Ferromanganese nodules from MANOP sites H, S, and R-control of mineralogical and chemical composition by multiple accretionary processses. Geochim. Cosmochim. Acta 48, 931-949.

    Google Scholar 

  • Emerson, S. (1976) Early diagenesis in anaerobic lake sediments: chemical equilibria in interstitial waters. Geochim. Cosmochim. Acta 40, 925-934.

    Google Scholar 

  • Friedl, G., Wehrli, B., and Manceau, A. (1997). Solid phases in the cycling of manganese in eutrophic lakes: New insights from EXAFS spectroscopy. Geochim. Cosmochim. Acta 61, 275-290.

    Google Scholar 

  • Fritsch, S., Post, J. E., and Navrotsky, A. (1997) Energetics of low-temperature polymorphs of manganese dioxide and oxyhydroxide. Geochim. Cosmochim. Acta 61, 2613-2616.

    Google Scholar 

  • Fuller, C. C., Davis, J. A., and Waychunas, G. A. (1993) Surface chemistry of ferrihydrite: Part 2. Kinetics of arsenate adsorption and coprecipitation. Geochim. Cosmochim. Acta 57, 2271-2282.

    Google Scholar 

  • Gammons, C. H. and Seward, T. M. (1996) Stability of manganese (II) chloride complexes at 25 to 300 °C. Geochim. Cosmochim. Acta 60, 4295-4311.

    Google Scholar 

  • Garrels, R. M. and Christ, C. L. (1965) Minerals, Solutions, and Equilibria. Harper & Rowe, N.Y. 450 pp.

    Google Scholar 

  • Giovanoli, R. (1980) On natural and synthetic manganese nodules. In Geology and Geochemistry of Manganese (eds. I. M. Varentsov and Gy. Grasselly), Vol. I, pp. 159-202. Hungarian Academy of Sciences, Budapest.

    Google Scholar 

  • Giovanoli, R. and Arrhenius, G. (1988) Structural chemistry of marine manganese and iron minerals and synthetic model compounds. In The Manganese Nodule Belt of the Pacific Ocean Geological Environment, Nodule Formation, and Mining Aspects (eds. P. Halbach, G. Friedrich, and U. von Stackelberg), pp. 20-37. Ferdinand Enke Verlag, Stutttgart.

    Google Scholar 

  • Glasby, G. P. (1974) Mechanisms of incorporation of manganese and associated trace elements in marine manganese nodules. Oceanogr. Mar. Biol. Ann. Rev. 12, 11-40.

    Google Scholar 

  • Glasby, G. P. (1999) Manganese: Predominant role of nodules and crusts. In Marine Geochemistry (eds. H. D. Schulz and M. Zabel), Springer Verlag.

  • Glasby, G. P., Emelyanov, E. M., Zhamoida, V. A., Baturin, G. N., Leipe, T., Bahlo, R., and Bonacker, P. (1997) Environments of formation of Baltic Sea ferromanganese concretions: A critical review. In Manganese Mineralization: Geochemistry and Mineralogy of Terrestrial and Marine Deposits (eds. K. Nicholson, J. R. Hein, B. Bühn, and S. Dasgupta), Geol. Soc. Spec. Publ. No. 119, pp. 213-237.

  • Glasby, G. P. and Thijssen, T. (1982) Control of the mineralogy and composition of manganese nodules by the supply of divalent transition metal ions. Neues Jb Mineral. 145, 291-307.

    Google Scholar 

  • Gramm-Osipov, L. M. (1997) Formation of solid phases of manganese in oxygenated aquatic environments. In Manganese Mineralization: Geochemistry and Mineralogy of Terrestrial and Marine Deposits (eds. K. Nicholson, J. R. Hein, B. Bühn, and S. Dasgupta), Geol. Soc. Spec. Publ. No. 119, 301-308.

  • Gramm-Osipov, L. M., Bychkov, A. S., and Volkova, T. I. (1984) The role of physicochemical conditions in the production of minerals in manganese nodules. Geochem. Int. 21(1), 60-65.

    Google Scholar 

  • Gramm-Osipov, L. M., Sharipov, R. Z., and Volkova, T. I. (1991) Oxidation states of Mn in aqueous solution. Geochem. Int. 28(10), 151-154.

    Google Scholar 

  • Gramm-Osipov, L. M., Volkova, T. I., and Chichkin, R. V. (1992) Laboratory data on the behavior of manganese dioxides in aqueous solution. Geochem. Int. 29(7), 28-36.

    Google Scholar 

  • Grill, E. V. (1982) Kinetic and thermodynamic factors in controlling manganese concentrations in oceanic waters. Geochim. Cosmochim. Acta 46, 2435-2446.

    Google Scholar 

  • Haese, R. R., Wallmann, K., Dahmke, A, Kretzmann, U., Müller, P. J., and Schulz, H. D (1994) Iron species determination to investigate early diagenetic reactivity in marine sediments. Geochim. Cosmochim. Acta 61, 63-72.

    Google Scholar 

  • Halbach, P., Giovanoli, R., and von Borstel, D. (1982) Geochemical processes controlling the relationship between Co, Mn, and Fe in early diagenetic deep-sea nodules. Earth Planet. Sci. Letts 60, 226-236.

    Google Scholar 

  • Halbach, P., Segl, M., Puteanus, D., and Mangini, A. (1983) Co-fluxes and growth rates in ferromanganese deposits from central Pacific seamount areas. Nature 304, 716-719.

    Google Scholar 

  • Halbach, P., Sattler, C.-D., Teichmann, F., and Wahnser, M. (1989) Cobalt-rich-and platinum-bearing manganese deposits in seamounts. Mar. Mining 8, 23-29.

    Google Scholar 

  • Hannington, M. D. and Jonasson, I. R. (1992) Fe and Mn oxides at seafloor hydrothermal vents. Catena Suppl. 21, 351-370.

    Google Scholar 

  • Hein, J. R., Koski, R. A., and Yeh, H.-W. (1987) Chert-hosted manganese deposits in sedimentary sequences of the Franciscan Complex of the Diablo Range, California. In Siliceous Sedimentary Rock-Hosted Ores and Petroleum (ed. J. R. Hein), pp. 206-230. Van Nostrand Reinhold Company, N.Y.

    Google Scholar 

  • Hem, J. D. (1972) Chemical factors that influence the availability of iron and manganese. Bull. Geol. Soc. Am. 83, 443-450.

    Google Scholar 

  • Hem, J. D. and Lind, C. J. (1983) Nonequilibrium models for predicting forms of precipitated manganese oxides. Geochim. Cosmochim. Acta 47, 2037-2046.

    Google Scholar 

  • Hem, J. D., Lind, C. J., and Robertson, C. E. (1989) Coprecipitation and redox reactions of manganese oxides with copper and nickel. Geochim. Cosmochim. Acta 53, 2811-2822.

    Google Scholar 

  • Hem, J. D., Robertson, C. E., and Lind, C. J. (1985) Thermodynamic stability of CoOOH and its coprecipitation with manganese. Geochim. Cosmochim. Acta 49, 801-810.

    Google Scholar 

  • Huckriede, H. and Meischner, D. (1996) Origin and environment of manganese-rich sediments within black-shale basins. Geochim. Cosmochim. Acta 60, 1399-1413.

    Google Scholar 

  • Huebner, J. S., Flohr, M. J. K., and Grossman, J. N. (1992) Chemical fluxes and origin of a manganese carbonate-oxide-silicate deposit in bedded chert. Chem. Geol. 100, 93-118.

    Google Scholar 

  • Jakobsen, R. and Postma, D. (1989) Formation and solid solution behavior of Ca-rhodochrosites in marine muds of the Baltic deeps. Geochim. Cosmochim. Acta 53, 2639-2648.

    Google Scholar 

  • Johnston, J. H. and Glasby, G. P. (1978) The secondary iron oxidehydroxide mineralogy of some deep sea and fossil manganese nodules: A Mössbauer and X-ray study. Geochem. J. 12, 153-164.

    Google Scholar 

  • Junta, J. L. and Hochella, M. F. (1994) Manganese(II) oxidation at mineral surfaces: A microscopic and spectroscopic study. Geochim. Cosmochim. Acta 58, 4985-4999.

    Google Scholar 

  • Kölling, M. (1992) FREAKIN Ein Program zur Erzeugung von Eingabedateien für PHREEQE. Schrifterreihe des Deutscher Verbandes für Wasserwirtschaft und Kulturbau e.V. (DVWK) 100, 321-344.

    Google Scholar 

  • Koschinsky, A. and Halbach, P. (1995) Sequential leaching of marine ferromanganese precipitates: Genetic implications. Geochim. Cosmochim. Acta 59, 5113-5132.

    Google Scholar 

  • Kunzendorf, H. and Glasby, G. P. (1992) Tungsten accumulation in Pacific ferromanganese deposits. Mineral. Deposita 27, 147-152.

    Google Scholar 

  • Liang, L. and Morgan, J. J. (1990) Chemical aspects of iron oxide coagulation in natural water: Laboratory studies and implications for natural systems. Aquatic Sciences 52, 32-55.

    Google Scholar 

  • Lilley, M. D., Feely, R. A., and Trefry, J. H. (1995) Chemical and biochemical transformations in hydrothermal plumes. In Seafloor Hydrothermal Systems: Physical, Chemical, Biological and Geological Interactions (eds. S. E. Humphris, R. A. Zierenberg, L. S. Mullineaux, and R. E. Thomson), Am Geophys. Un. Geophys. Monogr. 91, 369-391.

  • Luther, G.W., Brendel, P. J., Lewis, B. L., Sundby, B., Lefrançois, L., Silverberg, N., and Nuzzio, D. B. (1998) Simultaneous measurements of O2, Mn, Fe, I, and S(-II) in marine pore waters with a solid-state voltammetric microelectrode. Limnol. Oceanogr. 43, 325-333.

    Google Scholar 

  • Manceau, A., Gorshkov, A. I., and Drits, V. A. (1992) Structural chemistry of Mn, Fe, Co, and Ni in manganese hydrous oxides: Part I. Information from XANES spectroscopy. Am. Mineral. 77, 1133-1143.

    Google Scholar 

  • Mangini, A., Halbach, P., Puteanus, D., and Segl, M. (1987) Chemistry and growth of Central Pacific Mn-crusts and their economic importance. In Marine Minerals Advances in Research and Resource Assessment (eds. P. G. Teleki, M. R. Dobson, J. R Moore, and U. von Stackelberg), pp. 205-220. D. Reidel, Dordrecht.

    Google Scholar 

  • Manheim, F. T. (1982) Geochemistry of manganese carbonates in the Baltic Sea. Stockholm Contrib. Geol. 37, 145-159.

    Google Scholar 

  • Matsumoto, R. (1987) Origin of manganese nodules in the Jurasssic siliceous rocks of the Inuyama District, Central Japan. In Siliceous Sedimentary Rock-Hosted Ores and Petroleum (ed. J. R. Hein), pp. 181-205. Van Nostrand Reinhold Company, N.Y.

    Google Scholar 

  • Metz, S. and Trefry, J. H. (1993) Field and laboratory studies of metal uptake and release by hydrothermal precipitates. J. Geophys. Res. 98, 9661-9666.

    Google Scholar 

  • Meylan, M. A., Glasby, G. P., Hill, P. J., McKelvey, B. C., Walter, P., and Stoffers, P. (1990) Manganese crusts and nodules from the Manihiki Plateau and adjacent areas: Results of HMNZS Tui cruises. Mar. Mining 9, 43-72.

    Google Scholar 

  • Middelburg, J. J., De Lange, G. J., and van der Weijen, C. H. (1987) Manganese solubility control in marine pore waters. Geochim. Cosmochim. Acta 51, 759-763.

    Google Scholar 

  • Murad, E. and Schwertmann, U. (1988) Iron oxide mineralogy of some deep-sea ferromanganese crusts. Am. Mineral. 73, 1395-1400.

    Google Scholar 

  • Murray, J. W. (1979) Iron oxides. In Marine Minerals (ed. R. G. Burns), Revs Mineral. 6, 47-98.

  • Murray, J. W., Dillard, J. G., Giovanoli, R., Moers, H. and Stumm, W. (1985) On oxidation of Mn (II): Initial mineralogy, oxidation state and ageing. Geochim. Cosmochim. Acta 49, 463-470.

    Google Scholar 

  • Murray, J. W., Grundamanis, V., and Smethie, W. M. (1978) Interstitial water chemistry in the sediments of Saanich Inlet. Geochim. Cosmochim. Acta 42, 1011-1026.

    Google Scholar 

  • Okita, P. M., Maynard, J. B., Spiker, E. C., and Force, E. R. (1988) Isotopic evidence for organic matter oxidation by manganese reduction in the formation of stratiform carbonate ore. Geochim. Cosmochim. Acta 52, 2679-2685.

    Google Scholar 

  • Okita, P. M. and Shanks, W. C. (1992) Origin of stratiform sediment-hosted manganese carbonate ore deposits: Examples from Molango, Mexico, and TaoJiang. China Chem. Geol. 99, 139-164.

    Google Scholar 

  • Parkhurst, D. L. (1995) User's guide to PHREEQC — a computer program for speciation, reaction-path, advective-transport, and inverse geochemical calculations. U.S. Geol. Surv. Wat. Resourc. Invest. Rep. 95-4227, 143 pp.

  • Parkhurst, D. L., Thorstenson, D. C., and Plummer, L. N. (1980) PHREEQE — a computer program for geochemical calculations. U.S. Geol. Surv. Wat. Resourc. Invest. Rep. 80-96, 210 pp.

  • Parkhurst, D. L., Thorstenson, D. C., and Plummer, L. N. (1990) PHREEQE — a computer program for geochemical calculations.— (Conversion and upgrade of the Prime version of PHREEQE to IBM PC-compatible systems by J. V. Tirisanni and P. D. Glynn). U.S. Geol. Surv. Wat. Resourc. Invest. Rep. 80-96, 195 pp.

  • Pedersen, T. F. and Price, N. B. (1982) The geochemistry of manganese carbonate in Panama Basin sediments. Geochim. Cosmochim. Acta 46, 59-68.

    Google Scholar 

  • Pokrovski, G., Gout, R., Schott, J., Zotov, A., and Harrichoury, J.-C. (1996) Thermodynamic properties and stoichiometry of As(III) hydroxide complexes at hydrothermal conditions. Geochim. Cosmochim. Acta 60, 737-749.

    Google Scholar 

  • Pokrovskiy, O. S. and Savenko, V. S. (1995) Reactions of nonstoichiometric manganese oxides with aqueous solutions: solubility and redox equilibria. Geochem. Int. 32(10), 138-150.

    Google Scholar 

  • Puteanus, D., Glasby, G. P., Stoffers, P., and Kunzendorf, H. (1991) Hydrothermal iron-rich deposits from the Teahitia-Mehetia hot spot areas. Southwest Pacific. Mar. Geol. 98, 389-409.

    Google Scholar 

  • Robbins, J. A. and Callender, E. (1975) Diagenesis of manganese in Lake Michigan sediments. Am. J. Sci. 275, 512-533.

    Google Scholar 

  • Röper, H.-P. (1988) Siderit und Rhodochrosit in Sedimenten Berliner Seen. Nachr. Dt. Geol. Ges. 39, 79-80.

    Google Scholar 

  • Rudnicki, M. and Elderfield, H. (1993) A chemical model of the buoyant and neutrally buoyant plume above the TAG vent field, 26 degrees N, Mid-Atlantic Ridge. Geochim. Cosmochim. Acta 57, 2939-2957.

    Google Scholar 

  • Salonen, V.-P., Groenlund, T., Itkonen, A., Sturm, M. and Vuorinen, I. (1995) Geochemical record on early diagenesis of recent Baltic Sea sediments. Mar. Geol. 129, 101-109.

    Google Scholar 

  • Santschi, P., Höhner, P., Benoit, G., and Buchholtz-ten Brink, M. (1990) Chemical processes at the sediement-water interface. Mar. Chem. 30, 269-315.

    Google Scholar 

  • Schulz, H. D., Dahmke, A., Schinzel, U., Wallmann, K., and Zabel, M. (1994) Early diagenetic processes, fluxes, and reaction rates in sediments of the South Atlantic. Geochim. Cosmochim. Acta 58, 2041-2060.

    Google Scholar 

  • Schwertmann, U. and Fitzpatrick, R.W. (1992) Iron minerals in surface environments. Catena Suppl. 21, 7-30.

    Google Scholar 

  • Skinner, H. C. W. and Fitzpatrick, R.W. (1992) Iron and manganese biomineralization. Catena Suppl. 21, 1-6.

    Google Scholar 

  • Soetaert, K., Herman, P. M. J., and Middelburg, J. J. (1996) A model of early diagenetic processes from the shelf to abyssal depths. Geochim. Cosmochim. Acta 60, 1019-1040.

    Google Scholar 

  • Sternbeck, J and Sohlenius, G. (1997) Authigenic sulfide and carbonate mineral formation in Holocene sediments of the Baltic Sea. Chem. Geol. 135, 55-73.

    Google Scholar 

  • Stoffers, P., Glasby, G. P., Stueben, D., Renner, R. M., Pierre, T. G., Webb, J., and Cardile, C. M. (1993) Comparative mineralogy and geochemistry of hydrothermal iron-rich crusts from the Pitcairn, Teahitia-Mehitia, and Macdonald hot spot areas of the S.W. Pacific. Mar. Georesourc. Geotechnol. 11, 45-86.

    Google Scholar 

  • Stumm, W. and Morgan, J. J. (1970) Aquatic Chemistry. Wiley-Interscience, N.Y., 583 pp.

    Google Scholar 

  • Suess, E. (1979) Mineral phases formed in anoxic sediments by microbial decomposition of organic matter. Geochim. Cosmochim. Acta 43, 339-352.

    Google Scholar 

  • Tebo, B. M., Ghiorse, W. C., van Waasbergen, L. G., Siering, P. L., and Caspi, R. (1997) Bacterially mediated mineral formation; insights into manganese (II) oxidation from molecular genetic and biochemical studies. Revs Mineral. 35, 225-266.

    Google Scholar 

  • Tessier, A., Rapin, F., and Carignan, R. (1985) Trace metals in oxic lake sediments: possible adsorption onto iron oxyhydroxides. Geochim. Cosmochim. Acta 49, 183-194.

    Google Scholar 

  • Thamdrup, B., Fossing, H., and Jorgensen, B. B. (1994) Manganese, iron and sulfur cycling in a coastal marine sediment, Aarhus Bay, Denmark. Geochim. Cosmochim. Acta 58, 5115-5129.

    Google Scholar 

  • Torres, M. E., Marsaglia, K. M., Martin, J. B., and Murray, R. W. (1995) Sediment diagenesis in western Pacific Basins. In Active Marginal Basins of the Westen Pacific (eds. B. Taylor and J. Natland), Am. Geophys. Un. Geophys. Monogr.88, 241-258.

  • Tossell, J. A. (1997) Theoretical studies on arsenic oxide and hydroxide in minerals and aqueous solution. Geochim. Cosmochim. Acta 61, 1613-1623.

    Google Scholar 

  • Turekian, K. K. (1977) The fate of metals in the ocean. Geochim. Cosmochim. Acta 41, 1139-1144.

    Google Scholar 

  • Uchida, E., Goryozono, Y., Naito, M., and Yamagami, M. (1995) Aqueous speciation of iron and manganese chlorides in supercritical hydrothermal fluids. Geochem. J. 29, 175-188.

    Google Scholar 

  • Van Cappellen, P. and Wang, Y. (1996) Cycling of iron and manganese in surface sediments: a general theory for the coupled transport and reaction of carbon, nitrogen, sulfur, iron and manganese. Am. J. Sci. 296, 197-243.

    Google Scholar 

  • Varentsov, I. M., Zaitseva, L. V., and Putilina, V. S. (1985) On the geochemistry of nodular polymetallic ore formation in recent basins: Experimental data on the role of major ions in seawater in the process of copper sorption by manganese hydroxides. Chem. Erde 44, 193-225.

    Google Scholar 

  • Vink, B. W. (1996) Stability relations of antimony and arsenic compounds in the light of revised and extended Eh-pH diagrams. Chem. Geol. 130, 21-30.

    Google Scholar 

  • Waychunas, G. A. (1991) Crystal chemistry of oxides and oxyhydroxides. In Oxide Minerals: Petrologic and Magnetic Significance (ed. D. H. Lindsley), Revs Mineral. 25, 112-168.

  • Widerlund, A. and Ingri, J. (1995) Early diagenesis of arsenic in sediments of the Kalix River estuary, northern Sweden. Chem. Geol. 125, 185-196.

    Google Scholar 

  • Wolery, T.J. (1992) EQ3/6, A Software Package for Geochemical Modeling of Aqueous Systems: Package Overview and Installation Guide. UCRL-MA-110662-PT-1. Lawrence Livermore National Laboratory, Livermore, CA, 66 pp.

    Google Scholar 

  • Zaitseva, L. V. and Varentsov, I. M. (1990) Influence of major ions of seawater (chloride systems) on Cu(II) sorption by manganese oxyhydroxides: Use of experimental data in a model of polymetallic ore formation in Recent basins. Chem. Erde 50, 255-268.

    Google Scholar 

  • Zhamoida, V. A., Butylin, W. P., Glasby, G. P., and Popova, I. A. (1996) The nature of ferromanganese concretions from the eastern Gulf of Finland, Baltic Sea. Mar. Georesourc. Geotechnol. 14, 161-176.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glasby, G.P., Schulz, H.D. Eh ph Diagrams for mn, fe, co, ni, cu and as Under Seawater Conditions: Application of two new Types of eh ph Diagrams to the Study of Specific Problems in Marine Geochemistry. Aquatic Geochemistry 5, 227–248 (1999). https://doi.org/10.1023/A:1009663322718

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009663322718

Navigation