Skip to main content
Log in

Contraction Principles for Vector Valued Martingales with Respect to Random Variables Having Exponential Tail with Exponent 2<α<∞

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We prove a contraction principle for vector valued martingales with respect to random variables having exponential tail behaviour with exponent 2<α<∞.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Bennet, C., and Sharpley, R. (1988). Interpolation of Operators, Academic Press.

  2. Geiss, S. (1997). BMO ψ -spaces and applications to extrapolation theory. Studia Math. 122, 235–274.

    Google Scholar 

  3. Geiss, S. (1998). Operators on martingales, φ-summing operators, and the contraction principle. Prob. Math. Stat. 18, 149–171.

    Google Scholar 

  4. Hoffmann-Jørgensen, J. (1974). Sums of independent Banach space valued random variables. Studia Math. 52, 159–186.

    Google Scholar 

  5. Hoffmann-Jørgensen, J. (1977). Probability in Banach spaces. In Ecole d'Eté de Probabilités de Saint-Flour VI-1976, Vol. 598 of Lect. Notes Math., Springer, pp. 1–186.

  6. Kahane, J.-P. (1968, 1985). Some Random Series of Functions, Heath Math. Monographs, Cambridge Univ. Press.

  7. Kwapień, S., and Woyczyński, W. A. (1992). Random Series and Stochastic Integrals: Single and Multiple, Birkhäuser, Probability and its applications, Boston, Basel, Berlin.

  8. Latala, R. (1996). Tail and moment estimates for sums of independent random vectors with logarithmically concave tails. Studia Math. 118, 301–304.

    Google Scholar 

  9. Ledoux, M., and Talagrand, M. (1991). Probability in Banach spaces, Springer.

  10. Maurey, B., and Pisier, G. (1973). Caractérisation d'une classe d'espaces de Banach par des propriétés de séries aléatoires vectorielles. C.R. Acad. Sci. Paris, Ser. A 277, 687–690.

    Google Scholar 

  11. Maurey, B., and Pisier, G. (1976). Séries de variables aléatories vectorielles indépendantes et propriétés géométriques des espaces de Banach. Studia Math. 58, 45–90.

    Google Scholar 

  12. Pisier, G. (1986). Probabilistic methods in the geometry of Banach spaces. In Probability and Analysis, Varena (Italy) 1985, Vol. 1206 of Lect. Notes Math., Springer, pp. 167–241.

  13. Talagrand, M. (1994). The supremum of some canonical processes. Amer. J. Math. 116 (2), 283–325.

    Google Scholar 

  14. Tomczak-Jaegermann, N. (1989). BanachûMazur Distances and Finite-Dimensional Operator Ideals, Pitman, New York.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geiss, S. Contraction Principles for Vector Valued Martingales with Respect to Random Variables Having Exponential Tail with Exponent 2<α<∞. Journal of Theoretical Probability 14, 39–59 (2001). https://doi.org/10.1023/A:1007864813858

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007864813858

Navigation