Skip to main content
Log in

Hydrodynamics and Platoon Formation for a Totally Asymmetric Exclusion Model with Particlewise Disorder

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider a one-dimensional totally asymmetric exclusion model with quenched random jump rates associated with the particles, and an equivalent interface growth process on the square lattice. We obtain rigorous limit theorems for the shape of the interface, the motion of a tagged particle, and the macroscopic density profile on the hydrodynamic scale. The theorems are valid under almost every realization of the disordered rates. Under suitable conditions on the distribution of jump rates the model displays a disorder-dominated low-density phase where spatial inhomogeneities develop below the hydrodynamic resolution. The macroscopic signature of the phase transition is a density discontinuity at the front of the rarefaction wave moving out of an initial step-function profile. Numerical simulations of the density fluctuations ahead of the front suggest slow convergence to the predictions of a deterministic particle model on the real line, which contains only random velocities but no temporal noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Bardi and L. C. Evans, On Hopf's formulas for solutions of Hamilton-Jacobi equations, Nonlinear Anal. 8:1373–1381 (1984).

    Google Scholar 

  2. I. Benjamini, P. A. Ferrari, and C. Landim, Asymmetric conservative processes with random rates, Stochastic Process. Appl. 61:181–204 (1996).

    Google Scholar 

  3. E. Ben-Naim, P. Krapivsky, and S. Redner, Kinetics of clustering in traffic flows, Phys. Rev. E 50:822–829 (1994).

    Google Scholar 

  4. R. Durrett, Lecture Notes on Particle Systems and Percolation (Wadsworth and Brooks/Cole, 1988).

  5. M. R. Evans, Bose-Einstein condensation in disordered exclusion models and relation to traffic flow, Europhys. Lett. 36:13–18 (1996).

    Google Scholar 

  6. M. R. Evans, Exact steady states of disordered hopping particle models with parallel and ordered sequential dynamics, J. Phys. A 30:5669–5685 (1997).

    Google Scholar 

  7. W. Feller, Introduction to Probability Theory and Its Applications, Vol. II (Wiley, New York, 1971).

    Google Scholar 

  8. P. W. Glynn and W. Whitt, Departures from many queues in series, Ann. Appl. Probab. 1:546–572 (1991).

    Google Scholar 

  9. D. Griffeath, Additive and Cancellative Interacting Particle Systems, Lecture Notes in Mathematics, Vol. 724 (Springer, Heidelberg, 1979).

    Google Scholar 

  10. T. Halpin-Healy and Y. C. Zhang, Kinetic roughening phenomena, stochastic growth, directed polymers and all that, Phys. Rep. 25:215–414 (1995).

    Google Scholar 

  11. F. Kelly, Reversibility and Stochastic Networks (John Wiley, 1979).

  12. J. F. C. Kingman, The ergodic theory of subadditive stochastic processes, J. Royal Stat. Soc. Ser. B 30:499–510 (1968).

    Google Scholar 

  13. J. Krug, Platoon formations as a critical phenomenon, in Traffic and Granular Flow '97, D. E. Wolf and M. Schreckenberg, eds. (Springer, Singapore, 1998), p. 285.

    Google Scholar 

  14. J. Krug and P. A. Ferrari, Phase transitions in driven diffusive systems with random rates, J. Phys. A 29:L465–L471 (1998).

    Google Scholar 

  15. D. V. Ktitarev, D. Chowdhury, and D. E. Wolf, Stochastic traffic model with random deceleration probabilities: Queuing and power-law gap distribution, J. Phys. A 30:L221–L227 (1997).

    Google Scholar 

  16. P. Lax, Hyperbolic systems of conservation laws II, Comm. Pure Appl. Math. 10:537–566 (1957).

    Google Scholar 

  17. T. M. Liggett, Interacting Particle Systems (Springer-Verlag, New York, 1985).

    Google Scholar 

  18. P. L. Lions, Generalized Solutions of Hamilton-Jacobi Equations (Pitman, London, 1982).

    Google Scholar 

  19. M. Mézard, G. Parisi, and M. A. Virasoro, Spin Glass Theory and Beyond (World Scientific, Singapore, 1987).

    Google Scholar 

  20. K. Nagel, Life-times of simulated traffic jams, Int. J. Mod. Phys. C 5:567 (1994).

    Google Scholar 

  21. K. Nagel and M. Paczuski, Emergent traffic jams, Phys. Rev. E 51:2909 (1995).

    Google Scholar 

  22. C. Newman, Topics in Disordered Systems (Birkhäuser, Basel, 1997).

    Google Scholar 

  23. G. F. Newell, A theory of platoon formation in tunnel traffic, Oper. Res. 7:589–598 (1959).

    Google Scholar 

  24. R. T. Rockafellar, Convex Analysis (Princeton University Press, 1970).

  25. H. Rost, Non-equilibrium behaviour of a many particle process: Density profile and local equilibrium, Z. Wahrsch. Verw. Gebiete 58:41–53 (1981).

    Google Scholar 

  26. S. Scheidl and V. M. Vinokur, Driven dynamics of periodic elastic media in disorder, Phys. Rev. E 57:2574–2593 (1998).

    Google Scholar 

  27. T. Seppäläinen, A scaling limit for queues in series, Ann. Appl. Probab. 7:855–872 (1997).

    Google Scholar 

  28. T. Seppäläinen, Hydrodynamic scaling, convex duality, and asymptotic shapes of growth models, Markov Process. Related Fields 4:1–26 (1998).

    Google Scholar 

  29. T. Seppäläinen, Coupling the totally asymmetric simple exclusion process with a moving interface, Markov Process. Related Fields 4:593–628 (1998). Proceedings of I Escola Brasileira de Probabilidade (IMPA, 1997).

    Google Scholar 

  30. T. Seppäläinen, Existence of hydrodynamics for the totally asymmetric simple K-exclusion process, Ann. Probab. 27:361–415 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seppäläinen, T., Krug, J. Hydrodynamics and Platoon Formation for a Totally Asymmetric Exclusion Model with Particlewise Disorder. Journal of Statistical Physics 95, 525–567 (1999). https://doi.org/10.1023/A:1007535124155

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007535124155

Navigation