Skip to main content
Log in

A Framework for Automated Reasoning in Multiple-Valued Logics

  • Published:
Journal of Automated Reasoning Aims and scope Submit manuscript

Abstract

The language of signed formulas offers a first-order classical logic framework for automated reasoning in multiple-valued logics. It is sufficiently general to include both annotated logics and fuzzy operator logics. Signed resolution unifies the two inference rules of annotated logics, thus enabling the development of an SLD-style proof procedure for annotated logic programs. Signed resolution also captures fuzzy resolution. The logic of signed formulas offers a means of adapting most classical inference techniques to multiple-valued logics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, R. and Bledsoe, W. W.: A linear format for resolution with merging and a new technique for establishing completeness, J. ACM 17(3) (1970), 525–534.

    Google Scholar 

  2. Baaz, M. and Fermüller, C. G.: Resolution-based theorem proving for many-valued logics, J. Symbolic Computation 19(4) (1995), 353–391.

    Google Scholar 

  3. Blair, H. A. and Subrahmanian, V. S.: Paraconsistent logic programming, Theoretical Computer Science 68 (1989), 135–154.

    Google Scholar 

  4. Carnielli, W. A.: Systematization of finite many-valued logics through the method of tableaux, J. Symbolic Logic 52(2) (1987), 473–493.

    Google Scholar 

  5. Davey, B. A. and Priestley, H. A.: Introduction to Lattices and Order, Cambridge University Press, 1990.

  6. Doherty, P.: NML3 - A Non-Monotonic Formalism with Explicit Defaults. Linköping Studies in Science and Technology. Dissertations No. 258. Department of Computer and Information Science, Linköping University, 1991.

  7. Fitting, M.: First-order modal tableaux, J. Automated Reasoning 4 (1988), 191–213.

    Google Scholar 

  8. Hähnle, R.: Towards an efficient tableau proof procedure for multiple-valued logics, Proc. of the Workshop on Computer Science Logic pp. 248–260, Lecture Notes in Computer Science Vol. 533, Springer-Verlag, 1990.

  9. Hähnle, R.: Uniform notation tableau rules for multiple-valued Logics, Proc. Int. Symposium on Multiple-Valued Logic, IEEE Computer Society Press, 1991, pp. 26–29.

  10. Hähnle, R.: Automated Deduction in Multiple-Valued Logics, International Series of Monographs on Computer Science Vol. 10, Oxford University Press, 1994.

  11. Hähnle, R.: Short conjunctive normal forms in finitely-valued logics, J. Logic and Computation 4(6) (1994), 905–927.

    Google Scholar 

  12. Hähnle, R.: Tableaux methods for many-valued logics, Handbook of Tableau Methods, M. d'Agostino, D. Gabbay, R. Hähnle and J. Posegga (eds), Kluwer, to appear.

  13. Hähnle, R.: Exploiting data dependencies in many-valued logics, J. Applied Non-Classical Logics 6(1) (1996), 49–69.

    Google Scholar 

  14. Kifer, M. and Lozinskii, E.: A logic for reasoning with inconsistency, J. Automated Reasoning 9 (1992), 179–215.

    Google Scholar 

  15. Kifer, M. and Subrahmanian, V. S.: Theory of generalized annotated logic programming and its applications, J. Logic Programming 12 (1992), 335–367.

    Google Scholar 

  16. Leach, S. M. and Lu, J. J.: Query processing in annotated logic programming: theory and implementation, J. Intelligent Information Systems 6 (1996), 33–58.

    Google Scholar 

  17. Lee, R.: Fuzzy logic and the resolution principle, J. ACM 19 (1972), 109–119.

    Google Scholar 

  18. Liu, X. H., Tsai, J. P. and Weigert, T.: Λ-resolution and the interpretation of Λ-implication in Fuzzy Operator Logic, Information Science 56 (1991), 259–278.

    Google Scholar 

  19. Lu, J. J.: Logic programming with signs and annotations, J. Logic and Computation 6(6) (1996), 775–778.

    Google Scholar 

  20. Lu, J. J., Henschen, L. J., Subrahmanian, V. S. and da Costa, N. C. A.: Reasoning in paraconsistent logics, Automated Reasoning: Essays in Honor of Woody Bledsoe, R. Boyer (ed.), Kluwer, 1991, pp. 181–210.

  21. Lu, J. J., Murray, N. V. and Rosenthal, E.: Signed formulas and annotated logics, Proc. Int. Symposium on Multiple-Valued Logic, Computer Society Press, 1993, pp. 48–53.

  22. Lu, J. J., Murray, N. V. and Rosenthal, E.: Signed formulas and fuzzy operator logics, Proc. Int. Symposium on Methodologies for Intelligent Systems, Z. Rás and M. Zemankova (eds), pp. 75–84, Lecture Notes in Computer Science Vol. 864, Springer-Verlag, 1994.

  23. Lu, J. J. and Rosenthal, E.: Annotations, signs, and generally paraconsistent logics, Intelligent Systems, E. A. Yfantis (ed.), Kluwer, 1995, pp. 143–157.

  24. Messing, B.: Knowledge representation and processing in many-valued logics, Bericht 320, Institut für Angewandte Informatik und Formale Beschreibungsverfahren, Universität Karlsruhe.

  25. Mostowski, A.: On a generalization of quantifiers, Fundamenta Mathematicæ 44 (1957), 12–36.

    Google Scholar 

  26. Mukaidono, M.: Fuzzy inference of resolution style, Fuzzy Set and Possibility Theory, R. Yager (ed.), Pergamon, New York, 1982, pp. 224–231.

    Google Scholar 

  27. Murray, N. V. and Rosenthal, E.: Resolution and path dissolution in multiple-valued logics, Proc. Int. Symposium on Methodologies for Intelligent Systems, Z. Rás and M. Zemankova (eds), pp. 570–579, Lecture Notes in Computer Science Vol. 542, Springer-Verlag, 1991.

  28. Murray, N. V. and Rosenthal, E.: Improving tableaux proofs in multiple-valued logic, Proc. International Symposium on Multiple-Valued Logic, IEEE Computer Society Press, 1991, pp. 230–237.

  29. Murray, N. V. and Rosenthal, E.: Adapting classical inference techniques to multiple-valued logics using signed formulas, Fundamenta Informaticae 21 (1994), 237–253.

    Google Scholar 

  30. Ng, R. and Subrahmanian, V. S.: A semantical framework for supporting subjective and conditional probabilities in deductive databases, J. Automated Reasoning 10 (1993), 191–235.

    Google Scholar 

  31. Ramesh, A. and Murray, N. V.: Computing prime implicants/implicates for regular logics, Proc. International Symposium on Multiple-Valued Logics, IEEE Computer Society Press, 1994, pp. 115–123.

  32. Sandewall, E.: The semantics of non-monotonic entailment defined using partial interpretations, Non-Monotonic Reasoning, 2nd International Workshop, M. Ginsberg, M. Reinfrank and E. Sandewall (eds), pp. 570–579, Lecture Notes in Computer Science Vol. 346, Springer-Verlag, 1988.

  33. Subrahmanian, V. S.: On the semantics of quantitative logic programs, Proc. of the Symposium on Logic Programming, IEEE Computer Society Press, 1987, pp. 173–182.

  34. Subrahmanian, V. S.: Paraconsistent disjunctive databases, Theoretical Computer Science 93 (1992), 115–141.

    Google Scholar 

  35. Suchón, W.: La méthode de Smullyan de construire le calcul n-valent de Lukasiewicz avec implication et négation. Reports on Mathematical Logic, Universities of Cracow and Katowice 2 (1974), 37–42.

    Google Scholar 

  36. Surma, S. J.: An algorithm for axiomatizing every finite logic, Computer Science and Multiple-Valued Logics, David C. Rine (ed.), North-Holland, 1984, pp. 143–149.

  37. Weigert, T. J., Tsai, J. P. and Liu, X. H.: Fuzzy operator logic and fuzzy resolution, J. Automated Reasoning 10 (1993), 59–78.

    Google Scholar 

  38. Zach, R.: Proof Theory of Finite-valued Logics, M. Phil. thesis, Institut für Algebra und diskrete Mathematik, TU Wien. Available as Technical Report TUW-E185.2–Z.1–93.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, J.J., Murray, N.V. & Rosenthal, E. A Framework for Automated Reasoning in Multiple-Valued Logics. Journal of Automated Reasoning 21, 39–67 (1998). https://doi.org/10.1023/A:1005784309139

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005784309139

Navigation