Skip to main content
Log in

Investigating the Balance between Timber Harvest and Productivity of Global Coniferous Forests under Global Change

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

A widely used assumption in forestry is that thedemand for timber will exceed the maximum levelavailable from forests on a sustainable basis. In thisstudy, measurements of extracted timber and modeledforest productivity were used to investigate therelationship between harvested timber and naturalforest productivity for current conditions, and underglobal change scenario. The analysis was confined toconiferous forests and countries that have coniferousforests within their territories. Annual roundwoodproduction from the database of Food and AgricultureOrganization was used as an approximation of annualtimber harvest for each country. Annual stem primaryproductivity of coniferous forests was estimated usingthe BIOME-BGC model. Based on the current rates,annual timber extraction was extrapolated for eachcountry for the next 80 years. Then, on a countrybasis, the timber harvest was related to the modeledforest stem productivity, assuming that the area ofconiferous forest would stay unchanged for the next 80years.The results of this study suggest that globalconiferous forests currently produce more wood thanpeople consume, but that this gap will narrow in thefuture. The results also suggest that wood extractionmay reach forest regrowth by the middle of the nextcentury, even though most coniferous forests arelocated in high latitudes and may have an acceleratedstem growth associated with the joint effect ofclimate change and elevated carbon dioxideconcentration in the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ausubel, J. H.: 1998, The Nature of Earth: Robust, The Earth's Changing Land, GCTE-LUCC Open Science Conference on Global Change, Barcelona, Spain, IGBP.

    Google Scholar 

  • Avery, T. E. and Burkhart, H. E.: 1994, Forest Measurements, 4th edn., McGraw-Hill, New York, p. 408.

    Google Scholar 

  • Barger, R. L. and Benson, R. E.: 1979, Intensive Utilisation with Conventional Harvesting Systems, USDA Forest Service, Missoula, Montana.

    Google Scholar 

  • Bengtsson, G., Holmlund, J., Lundström, A., and Sandwall, M.: 1989, Long-Term Forecasts of Timber Yields in Sweden, Swedish University of Agricultural Sciences, Department of Forest Survey, Sweden.

    Google Scholar 

  • Boer, G. J., Flato, G. M., Reader, M. C., and Ramsden, D.: 1999, ‘A Transient Climate Change Simulation with Historical and Projected Greenhouse Gas and Aerosol Forcing: Experimental Design and Comparison with the Instrumental Record for the 20th Century’ Clim. Dyn. 16, 405–425.

    Google Scholar 

  • Bugmann, H. K. M., Xiaodong, Y., Sykes, M. T., Martin, P., Lindener, M., Desanker, P. V., and Cumming, S. G.: 1996, ‘A Comparison of Forest Gap Models: Model Structure and Behaviour’ Clim. Change 34, 289–313.

    Google Scholar 

  • Castro, F. D., Williamson, G. B., and Jesus, R. M. D.: 1993, ‘Radial Variation in the Wood Specific Gravity of Joannesia princeps: The Roles of Age and Diameter’ Biotropica 25, 176–182.

    Google Scholar 

  • Churkina, G. and Running, S. W.: 1998, ‘Contrasting Climatic Controls on the Estimated Productivity of Different Biomes’ ECOSYSTEMS 1, 206–215.

    Google Scholar 

  • Clutter, J. L., Fortson, J. C., Pienaar, L. V., Brister, L. V., and Bailey, R. L.: 1983, Timber Management: A Quantitative Approach, John Wiley & Sons, New York, p. 333.

    Google Scholar 

  • Dean, T. J. and Baldwin, V. C.: 1996, ‘The Relationship between Reineke's Stand-Density Index and Physical Stem Mechanics’ For. Ecol. Manage. 81, 25–34.

    Google Scholar 

  • DeFries, R., Hansen, M., Townshend, J., and Sohlberg, R.: 1998, ‘Global Land Cover Classification at 8 km Spatial Resolution: The Use of Training Data Derived from Landsat Imagery in Decision Tree Classifiers’ Int. J. Remote Sens. 19, 3141–3168.

    Google Scholar 

  • Dentener, F. J. and Crutzen, P. J.: 1993, ‘Reaction of N2O5 on Tropospheric Aerosols: Impact on Global Distribution of NOx, O3, and OH’ J. Geophys. Res. 98, 7149–7163.

    Google Scholar 

  • Dentener, F. J. and Crutzen, P. J.: 1994, ‘Three Dimensional Model of the Global Ammonia Cycle’ J. Atmos. Chem. 19, 331–369.

    Google Scholar 

  • ECE/FAO: 1994, International Forest Fire News, ESE/FAO Agriculture and Timber Division, Geneva.

    Google Scholar 

  • Elfving, B., Tegnhammar, L., and Tveite, B.: 1996, ‘Studies on Growth Trends of Forests in Sweden and Norway’ in Spiecker, H., Mielikäinen, K., Köhl, M., and Skovsgaard, J. P. (eds.), Growth Trends in European Forests, Springer-Verlag, Berlin, pp. 61–70.

    Google Scholar 

  • FAO: 1997, FAOSTAT: Forestry Data, Food and Agriculture Organization of the United Nations.

  • Harmon, M. E., Ferrell, W. K., and Franklin, J. F.: 1990, ‘Effects on Carbon Storage of Conversion of Old-Growth Forests to Young Forests’ Science 247, 699–702.

    Google Scholar 

  • Holland, E. A., Braswell, B. H., Lamarque, J.-F., Townsend, A., Sulzman, J., Müller, J.-F., Dentener, F., Brasseur, G., Levy II, H., Penner, J. E., and Roelofs, G.-J.: 1997, ‘Variation in the Predicted Spatial Distribution of Atmospheric Nitrogen Deposition and their Impact on Carbon Uptake by Terrestrial Ecosystems’ J. Geophys. Res. 102, 15849–15866.

    Google Scholar 

  • Hunt, E. R. J., Piper, S. C., Nemani, R., Keeling, C. D., Otto, R. D., and Running, S. W.: 1996, ‘Global Net Carbon Exchange and Intra-Annual Atmospheric CO2 Concentrations Predicted by an Ecosystem Process Model and Three-Dimensional Atmospheric Transport Model’ Global Biogeochem. Cycles 10, 431–456.

    Google Scholar 

  • Isaev, A. C., Korovin, G. N., Suhih, V. I., Titov, S. P., Ytkin, A. I., Golub, A. A., Zamolodchikov, D. G., and Prjazhnikov, A. A.: 1996, Ecological Problems of Carbon Dioxide Assimilation by the Means of Forest Restoration and Planting in Russia, Center for Russian Ecological Policy, Moscow, p. 155.

    Google Scholar 

  • Kauppi, P. E., Mielikäinen, K., and Kuusela, K.: 1992, ‘Biomass and Carbon Budget of European Forests, 1971 to 1990’ Science 256, 70–74.

    Google Scholar 

  • Khasa, P. D., Li, P., Magnussen, S., and Bousquet, J.: 1995, ‘Early Evaluation of Racosperma suriculiforme and R. mangium Provenance Trials on Four Sites in Zaire’ For. Ecol. Manage. 78, 99–113.

    Google Scholar 

  • Kimball, J. S., Running, S. W., and Nemani, R.: 1997, ‘An Improved Method for Estimating Surface Humidity from Daily Minimum Temperature’ Agric. For. Meteorol. 85, 87–98.

    Google Scholar 

  • Kolchugina, T. P. and Vinson, T. S.: 1993, ‘Comparison of Two Methods to Assess the Carbon Budget of Forest Biomes in the Former Soviet Union’ Water Air Soil Pollut. 70, 207–221.

    Google Scholar 

  • Kolchugina, T. P. and Vinson, T. S.: 1995, ‘Role of Russian Forests in the Global Carbon Balance’ AMBIO 24, 258–264.

    Google Scholar 

  • Kolchugina, T. P. and Vinson, T. S.: 1998, ‘The Future Role of Russian Forests in the Global Carbon Balance’ AMBIO 27, 579–580.

    Google Scholar 

  • Korol, R. L., Running, S. W., Milner, K., and Hunt, E. R.: 1991, ‘Testing a Mechanistic Carbon Balance Model against Observed Tree Growth’ Can. J. Forest Res. 21, 1098–1105.

    Google Scholar 

  • Korovin, G. N.: 1996, ‘Analysis of the Distribution of Forest Fires in Russia’ in Goldammer, J. G. and Furyaev, V. V. (eds.), Fire in Ecosystems of Boreal Eurasia, Kluwer Academic Publishers, Dordrecht, pp. 112–128.

    Google Scholar 

  • Laarman, J. G. and Sedjo, R. A.: 1992, Global Forests: Issues for Six Billion People, McGraw-Hill, Inc., New York, p. 337.

    Google Scholar 

  • Lelieveld, J., Crutzen, P. J., and Dentener, F. J.: 1998, ‘Changing Concentration. Lifetime and Climate Forcing of Atmospheric Methane’ Tellus 50b, 128–150.

    Article  Google Scholar 

  • Lowe, J. J., Power, K., and Gray, S. L.: 1994, Canada's Forest Inventory 1991, Petawawa National Forest Institute, Ontario.

    Google Scholar 

  • Mackenzie, F. T. and Mackenzie, J. A.: 1995, Our Changing Planet: An Introduction to Earth System Science and Global Environmental Change, Prentice Hall, New Jersey, p. 387.

    Google Scholar 

  • McDonald, S. S., Williamson, G. B., and Wiemann, M. C.: 1995, ‘Wood Specific Gravity and Anatomy in Helicarpus appendiculatus (Tiliaceae)’ Amer. J. Botany 82, 855–861.

    Google Scholar 

  • McFarlane, N. A., Boer, G. J., Blanchet, J.-P., and Lazare, M.: 1992, ‘The Canadian Climate Centre Second-Generation General CirculationModel and its Equilibrium Climate’ J. Climate 5, 1013–1044.

    Google Scholar 

  • Mielikäinen, K. and Sennov, S. N.: 1996, ‘Growth Trends of Forests in Finland and North-Western Russia’ in Spiecker, H., Mielikäinen, K., Köhl, M., and Skovsgaard, J. P. (eds.), Growth Trends in European Forests, Springer-Verlag, Berlin, pp. 19–27.

    Google Scholar 

  • Milner, K. S., Running, S. W., and Coble, D. W.: 1996, ‘A Biophysical Soil-Site Model for Estimating Potential Productivity of Forested Landscapes’ Can. J. Forest Res. 26, 1174–1186.

    Google Scholar 

  • Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G., and Nemani, R. R.: 1997, ‘Increased Plant Growth in the Northern High Latitudes from 1981 to 1991’ Nature 386, 698–702.

    Google Scholar 

  • Piper, S. C. and Stewart, E. F.: 1996, ‘A Gridded Global Data Set of Daily Temperature and Precipitation for Terrestrial Biospheric Modeling’ Global Biogeochem. Cycles 10, 757–782.

    Google Scholar 

  • Powell, D. S., Failkner, J. L., Darr, D. R., Zhu, Z., and MacCleery, D. W.: 1994, Forest Resources of the United States, 1992, USDA Forest Service, Rocky Mountain forest and Range Experimental Station, Fort Collins.

    Google Scholar 

  • Richardson, S. D.: 1990, Forests and Forestry in China: Changing Patterns in Resource Development, Island Press, Washington D.C., p. 352.

    Google Scholar 

  • Riebsame, W. E., Meyer, W. B., and Turner II, B. L.: 1994, ‘Modeling Land Use and Cover as Part of Global Environmental Change’ Clim. Change 28, 45–64.

    Google Scholar 

  • Rueda, R.: 1992, ‘Radial and Vertical Wood Specific Gravity in Ochroma pyramidale (Bombacaceae)’ Biotropica 24, 512–518.

    Google Scholar 

  • Running, S. W.: 1994, ‘Testing FOREST-BGC Ecosystem Process Simulations across a Climatic Gradient in Oregon’ Ecol. Appl. 4, 238–247.

    Google Scholar 

  • Running, S. W. and Hunt, E. R. J.: 1993, ‘Generalization of a Forest Ecosystem Process Model for Other Biomes, Biome-BGC, and an Application for Global-Scale Models’ in Ehleringer, J. R. and Field, C. B. (eds.), Scaling Physiological Processes: Leaf to Globe, Academic Press, San Diego, CA, pp. 141–158.

    Google Scholar 

  • Running, S. W., Nemani, R. R., and Hungerford, R. D.: 1987, ‘Extrapolation of Synoptic Meteorological Data in Mountainous Terrain and its Use for Simulating Forest Evapotranspiration and Photosynthesis’ Can. J. Forest Res. 17, 472–483.

    Google Scholar 

  • Sharma, N. P., Rowe, R., Openshaw, K., and Jacobson, M.: 1992, ‘World Forests in Perspective’ in Sharma, N. P. (ed.), Managing the World's Forests: Looking for Balance between Conservation and Development, Kendal/Hunt Publishing Company, Dubuque, pp. 17–32.

    Google Scholar 

  • Skovsgaard, J. P. and Henriksen, H. A.: 1996, ‘Increasing Site Productivity during Consecutive Generations of Naturally Regenerated and Planted Beech (Fagus sylvatica L.) in Denmark’ in Spiecker, H., Mielikäinen, K., Köhl, M., and Skovsgaard, J. P. (eds.), Growth Trends in European Forests, Springer-Verlag, Berlin, pp. 89–98.

    Google Scholar 

  • Smith, W. H.: 1990, Air Pollution and Forests: Interaction between Air Contaminants and Forest Ecosystems, Springer-Verlag, New York, p. 618.

    Google Scholar 

  • Stocks, B. J.: 1991, ‘The Extent and Impact of Forest Fires in Northern Circumpolar Countries’ in Levin, J. S. (ed.), Global Biomass Burning: Atmospheric, Climatic, and Biospheric Implications, MIT Press, Cambridge, pp. 197–202.

    Google Scholar 

  • Thornton, P. E.: 1998, Regional Ecosystem Simulation: Combining Surface-and Satellite-Based Observations to Study Linkages between Terrestrial Energy and Mass Budgets, Ph.D., University of Montana.

  • Thornton, P. E. and Running, S. W.: 1999, ‘An Improved Algorithm for Estimating Incident Daily Solar Radiation from Measurements of Temperature, Humidity, and Precipitation’ Agric. For. Meteorol. 93, 211–228.

    Google Scholar 

  • Tomppo, E.: 1997, National Forest Inventory, Finnish Forest Research Institute METLA, Helsinki.

    Google Scholar 

  • Turner, D. P., Koerper, G. J., Harmon, M. E., and Lee, J. J.: 1995a, ‘A Carbon Budget for Forests of the Conterminous United States’ Ecol. Appl. 5, 421–436.

    Google Scholar 

  • Turner, D. P., Koerper, G. J., Harmon, M. E., and Lee, J. J.: 1995b, ‘Carbon Sequestration by Forests of the United States. Current Status and Projections to the Year 2040’ Tellus 47H, 232–239.

    Google Scholar 

  • UN/ECE: 1997, Timber Database, United Nations Economic Commission for Europe.

  • Valendik, E. N.: 1996, ‘Temporal and Spatial Distribution of Forest Fires in Siberia’ in Goldammer, J. G. and Furyaev, V. V. (eds.), Fire in Ecosystems of Boreal Eurasia, Kluwer Academic Publishers, Dordrecht, pp. 129–138.

    Google Scholar 

  • Waring, R. and Running, S. W.: 1998, Forest Ecosystems: Analysis at Multiple Scales, Academic Press, New York, p. 370.

    Google Scholar 

  • Wernick, I. K., Waggoner, P. E., and Ausubel, J. H.: 1998, ‘Searching for Leverage to Conserve Forests: The Industrial Ecology of Wood Products in the United States’ J. Indust. Ecol. 1, 125–145.

    Google Scholar 

  • Williams, M.: 1994, ‘Forests and Tree Cover’ in Meyer, W. B. and Turner II, B. L. (eds.), Changes in Land Use and Land Cover: A Global Perspective, Cambridge University Press, Cambridge, pp. 95–124.

    Google Scholar 

  • WorldBank: 1997, Russia: Forest Policy during Transition, The World Bank, Washington, D.C., p. 279.

    Google Scholar 

  • WRI: 1996, World Resources: a Guide to the Global Environment, New York.

  • Yanchuk, A. D. and Kiss, G. K.: 1993, ‘Genetic Variation in Growth and Wood Specific Gravity and its Utility in the Improvement of Interior Spruce in British Colombia’ Silvae Genetica 42, 141–148.

    Google Scholar 

  • Young, R. A. and Giese, R. L.: 1990, Introduction to Forest Science, Wiley and Sons, New York, p. 586.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Churkina, G., Running, S. Investigating the Balance between Timber Harvest and Productivity of Global Coniferous Forests under Global Change. Climatic Change 47, 167–191 (2000). https://doi.org/10.1023/A:1005620808273

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005620808273

Keywords

Navigation