Skip to main content
Log in

Model Computations of the Impact of Climatic Change on the Windthrow Risk of Trees

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

The more humid, warmer weather pattern predicted for the future is expected to increase the windthrow risk of trees through reduced tree anchorage due to a decrease in soil freezing between late autumn and early spring, i.e during the most windy months of the year. In this context, the present study aimed at calculating how a potential increase of up to 4°C in mean annual temperature might modify the duration of soil frost and the depth of frozen soil in forests and consequently increase the risk of windthrow. The risk was evaluated by combining the simulated critical windspeeds needed to uproot Scots pines (Pinus sylvestris L.) under unfrozen soil conditions with the possible change in the frequency of these winds during the unfrozen period. The evaluation of the impacts of elevated temperature on the frequency of these winds at times of unfrozen and frozen soil conditions was based on monthly wind speed statistics for the years 1961–1990 (Meteorological Yearbooks of Finland, 1961–1990). Frost simulations in a Scots pine stand growing on a moraine sandy soil (height 20 m, stand density 800 stems ha−1) showed that the duration of soil frost will decrease from 4–5 months to 2–3 months per year in southern Finland and from 5–6 months to 4–5 months in northern Finland given a temperature elevation of 4°C. In addition, it could decrease substantially more in the deeper soil layers (40–60 cm) than near the surface (0–20 cm), particularly in southern Finland. Consequently, tree anchorage may lose much of the additional support gained at present from the frozen soil in winter, making Scots pines more liable to windthrow during winter and spring storms. Critical wind-speed simulations showed mean winds of 11–15 m s−1 to be enough to uproot Scots pines under unfrozen soil conditions, i.e. especially slender trees with a high height to breast height diameter ratio (taper of 1:120 and 1:100). In the future, as many as 80% of these mean winds of 11–15 m s−1 would occur during months when the soil is unfrozen in southern Finland, whereas the corresponding proportion at present is about 55%. In northern Finland, the percentage is 40% today and is expected to be 50% in the future. Thus, as the strongest winds usually occur between late autumn and early spring, climate change could increase the loss of standing timber through windthrow, especially in southern Finland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, R.: 1964, ‘Minimizing Windfall Around Clear Cuttings in Spruce-fir Forests’, Forest Sci. 10, 130-142.

    Google Scholar 

  • Bakke, A.: 1989, ‘The Recent Ips Typographus Outbreak in Norway — Experiences From a Control Program’, Holartic Ecol. 12, 515-519.

    Google Scholar 

  • Carter, T., Posch, M., and Tuomenvirta, H.: 1995, Silmuscen and Gligen User's Guide, Guidelines for the Construction of Climatic Scenarios and Use of a Stochastic Weather Generator in the Finnish Research Programme on Climate Change (Silmu), p. 62.

  • Coutts, M. P.: 1986, ‘Components of Tree Stability in Sitka Spruce on Peaty Gley Soil’, Forestry 59(2), 173-197.

    Google Scholar 

  • de Vries, D. A.: 1975, ‘Heat Transfer in Soils’, in de Vries, D. A. and Afgan, N. H. (eds.), Heat and Mass Transfer in the Biosphere, I. Transfer Processes in Plant Environment, Washington D.C., pp. 5-28.

    Google Scholar 

  • Doll, D.: 1991a, ‘Vingt-cinq ans de grands vents dans les forêts d'Europe Occidentale: météores Responsables et Ampleur des Chablis’, Revue Forestière Française, Hors Serie 2 (Proceedings 10th World Forestry Congress), pp. 346-354.

  • Doll, D.: 1991b, ‘La catastrophe sylvicole de l'hiver 1990’, Historiens-Géographie 339, 213-218.

    Google Scholar 

  • Easmus, D. and Jarvis, P. G.: 1989, ‘The Direct Effects of Increase in the Global Atmosphere CO2 Concentration on Natural and Commercial Temperate Trees and Forests’, Adv. Ecol. Res. 19, 1-55.

    Google Scholar 

  • Fraser, A. I. and Gardiner, J. B. H.: 1967, ‘Rooting and Stability in Sitka Spruce’, Forestry Commission Bull. 40, HMSO, London, p. 28.

    Google Scholar 

  • Gardiner, B. A. and Peltola, H.: 1998, The Development and Testing of Models to Predict the Critical Wind Speed Required to Damage Coniferous Trees, Manuscript to be submitted.

  • Gardiner, B. A. and Stacey, G. R.: 1996, ‘Designing Forest Edges to Improve Wind Stability’, Forestry Commission Technical Paper 16, Forestry Commission, Edinburgh, p. 8.

    Google Scholar 

  • Gardiner, B. A., Stacey, G. R., Belcher, R. E., and Wood, C. J.: 1997, ‘Field and Wind Tunnel Assessments of the Implications of Respacing and Thinning for Tree Stability’, Forestry 70(3), 233-252.

    Google Scholar 

  • Grace, J.: 1977, Plant Response to Wind, Academic Press, London, New York, San Francisco, p. 203.

    Google Scholar 

  • Huttunen, L. and Soveri, J.: 1993, ‘Luonnontilaisen Roudan Alueellinen ja Ajallinen Vaihtelu Suomessa. Abstract: The Regional and Temporal Variation of Frost in Natural Conditions in Finland’, Publications of National Board of Waters and the Environment, Series A 139, p. 74.

  • Huttunen, L. and Kujala, K.: 1994, ‘Water Content Variations of Sandy Soil Under Winter Conditions,’ Publications of the Water and Environment Research Institute, National Board of Waters and the Environment, Finland, 17, pp. 51-58.

    Google Scholar 

  • Jansson, P. E.: 1991, Simulation Model for Soil Water and Heat Conditions, Description of the SOIL Model, Swedish University of Agricultural Sciences, Uppsala 1991, Report 165, p. 72.

    Google Scholar 

  • Jones, H. G.: 1983, Plants and Microclimate. A Quantitative Approach to Environmental Plant Physiology, Cambridge University Press, Cambridge, p. 323.

    Google Scholar 

  • Kellomäki, S., Väisänen, H., Hänninen, H., Kolström, T., Lauhanen, R., Mattila, U., and Pajari, B.: 1992, ‘SIMA: A Model for Forest Succession Based on the Carbon and Nitrogen Cycles with Application to Silvicultural Management of the Forest Ecosystem’, Silva Carelica 22, 91.

    Google Scholar 

  • Kellomäki, S. and Väisänen, H.: 1997, ‘Modelling the Dynamics of the Forest Ecosystem for Climate Change Studies in the Boreal Conditions’, Ecol. Model. 97, 121-140.

    Google Scholar 

  • Kersten, M. S.: 1949, Thermal Properties of Soils, Inst. of Technology, Eng. Exp. Station, Minneapolis, Univ. Minnesota, Bulletin 28, p. 26.

  • Kettunen, L., Mukula, J., Pohjonen, V., and Varjo, U.: 1987, ‘The Effect of Climatic Variations on Agriculture in Finland’, in Parry, M. L., Carter, T. R., and Konijn T. N. (eds.), The Impact of Climatic Variations on Agriculture, Volume 1, Assessments in Cool Temperate and Cold Regions, International Institute for Applied Systems Analysis, p. 90.

  • Kolstock, N. and Lockow, K. W.: 1981, Mathematisch-statische Untersuchungen über die Sturmgefährdung rationell gepflegter Kiefern Jungbestände — ein Beitrag zur Erhöhung der Betriebssicherheit, Beitrage der Forsctwirtschaft 15, 1-7.

    Google Scholar 

  • Laiho, O.: 1987, ‘Metsiköiden alttius tuulituhoille Etelä-Suomessa. Summary: Susceptibility of Forest Stands to Windthrow in Southern Finland’, Folia Forestalia 706, 24.

    Google Scholar 

  • Lohmander, P. and Helles, F.: 1987, ‘Windthrow Probability as a Function of Stand Characteristics and Shelter’, Scandinavian J. Forest Res. 2, 227-238.

    Google Scholar 

  • Meteorological Yearbooks of Finland: 1961–1990, The Finnish Meteorological Institute, No: 61–90.

  • Metsätilastotiedote.: 1996, ‘Suomen metsävarat 1989–1994 ja niiden muutokset vuodesta 1951 lähtien’, No 354 (in Finnish), (English transl.: Forest Resources in Finland in Years 1989–1994 and Their Changes Since 1951').

  • Mualem, Y.: 1976, ‘A New Model for Predicting the Hydraulic Conductivity of Unsaturated Porous Media’, Water Resour. Res. 12, 513-522.

    Google Scholar 

  • Mustonen, S.: 1966, ‘Ilmasto-ja maastotekijöiden vaikutuksesta lumen vesiarvoon ja roudan syvyyteen. Summary: Effect of Snow Cover on Frost Depth’, Acta Forestalia Fennica 79(1), 3-40.

    Google Scholar 

  • Neustein, S. A.: 1965, ‘Windthrow on the Margins of Various Sizes of Felling Area’, in Report on Forest Research for the Year Ended March 1964, Forestry Commission, pp. 166-171.

  • Peltola, H.: 1995, ‘Studies on the Mechanism of Wind-Induced Damage of Scots Pine. D. Sc. (Agr. and For.) Thesis’, University of Joensuu, Faculty of Forestry, Research Notes 32, 28.

  • Peltola, H.: 1996a, ‘Swaying of Trees in Response to Wind and Thinning in a Stand of Scots Pine’, Boundary-Layer Meteorol. 77, 285-304.

    Google Scholar 

  • Peltola, H.: 1996b, ‘Model Computations on the Wind Flow and Turning Moment by Wind for Scots Pine Along the Margins of Clear-Cut Areas’, Forest Ecol. Managem. 83, 203-215.

    Google Scholar 

  • Peltola, H. and Kellomäki, S.: 1993, ‘A Mechanistic Model for Calculating Windthrow and Stem Breakage of Scots Pines at Stand Edge’, Silva Fennica 27(2), 99-111.

    Google Scholar 

  • Peltola, H., Kellomäki, S., Väisänen, H., and Ikonen, V-P.: 1998, HWIND: A Mechanistic Model for Wind and Snow Damage of Scots Pine, Norway Spruce and Birch, Manuscript submitted.

  • Peltola, H., Nykänen, M-L., and Kellomäki, S.: 1997b, ‘Model Computations on the Critical Combination of Snow Loading and Wind Speed for Snow Damage of Scots Pine, Norway Spruce and Birch sp. at Stand Edge’, Forest Ecol. Managem. 95, 229-241.

    Google Scholar 

  • Pennala, E.: 1980, Lujuusopin perusteet, No: 407, Otakustantamo, Espoo. p. 355 (in Finnish).

    Google Scholar 

  • Persson, P.: 1975. Stormskador på skog — uppkomstbetingelser och inverkan av skogliga åtgärder, Skogshögskolan, Institutionen för skogsproduktion. Summary: Windthrow in Forests — Its Causes and the Effect of Forestry Measures, Swedish University for Agriculture Science, Department of Forest Management, Sweden, No. 36, p. 294.

    Google Scholar 

  • Petty, J. A. and Swain, C.: 1985, ‘Factors Influencing Stem Breakage of Conifers in High Winds’, Forestry 58(1), 75-85.

    Google Scholar 

  • Quine, C. P.: 1995, ‘Assessing the Risk of Wind Damage to Forests’, in Coutts, M. P. and Grace, J. (eds.), Wind and Trees, Cambridge University Press, pp. 379-403.

  • Quine, C. P., Coutts, M., Gardiner, B., and Pyatt, G.: 1995, ‘Forests and Wind: Management to Minimise Damage’, Forestry Comm. Bull. 114, 27.

    Google Scholar 

  • Ravn, H. P.: 1985, ‘Expansion of the Populations of Ips Typographus L. (Coleoptera, Scolytidae) and Their Local Dispersal Following Gale Disaster in Denmark’, Zeitschrift für angewandte Entomologie 99(1), 27-33.

    Google Scholar 

  • Savolainen, I., Hillebrand, K., Nousiainen, I., and Sinisalo, J.: 1994, Greenhouse Impacts of the Use of Pand Wood for Energy, VTT Research Notes 1559, Technical Research Centre of Finland, Espoo, Finland.

    Google Scholar 

  • Schneider, S. H. and Rosenberg, N. J.: 1989, ‘The Greenhouse Effect: Its Causes, Possible Impacts, and Associated Uncertainties’, in Rosenberg, N. J., Easterling III, W. E., Crosson, P. R., and Darmstader, J. (eds.), Greenhouse Warming: Abatement and Adaptation, pp. 7-34.

  • Schroeder, L. M. and Eidmann, H. H.: 1993, ‘Attacks of Bark-and Wood-Boring Coleoptera on Snow-Broken Conifers over a Two-Year Period, Scan. J. For. Res. 8, 257-265.

    Google Scholar 

  • Smith, V. G., Watts, M., and James, D. F.: 1987, ‘Mechanical Stability of Black Spruce in the Clay Belt Region of Northern Ontario’, Can. J. For. Res. 17, 1080-1091.

    Google Scholar 

  • Solantie, R.: 1986, ‘Hårda vindar och vindskador’, Skogsbruket 1, 12-14.

    Google Scholar 

  • Solantie, R.: 1986, ‘Effect of Weather and Climatological Background on Snow Damage of Forests in Southern Finland in November 1991’, Silva Fennica 28(3), 203-211.

    Google Scholar 

  • Stacey, G. R., Belcher, R. E., Wood, C. J., and Gardiner, B. A.: 1994, ‘Wind and Wind Forces in a Model Spruce Forest’, Boundary-Layer Meteorol. 69, 311-334.

    Google Scholar 

  • Wanderler, H. and Gunter, R.: 1991, ‘Sturmschaden 1990: Lagebeurteilung aus der Sich der Eidgenossischen Forsdirektion’, Scheweiz. Z. Forstwes 142(6), 453-462.

    Google Scholar 

  • Yli-Vakkuri, P.: 1960, ‘Metsiköiden routa-ja lumisuhteista, Summary: Snow and Frozen Soil Conditions in the Forest’, Acta Forestalia Fennica 71(5), 2-48.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peltola, H., Kellomäki, S. & Väisänen, H. Model Computations of the Impact of Climatic Change on the Windthrow Risk of Trees. Climatic Change 41, 17–36 (1999). https://doi.org/10.1023/A:1005399822319

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005399822319

Keywords

Navigation