Skip to main content
Log in

Solar Nebula Magnetohydrodynamics

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The dynamical state of the solar nebula depends critically upon whether or not the gas is magnetically coupled. The presence of a subthermal field will cause laminar flow to break down into turbulence. Magnetic coupling, in turn, depends upon the ionization fraction of the gas. The inner most region of the nebula (≲0.1 AU) is magnetically well-coupled, as is the outermost region (≳10 AU). The magnetic status of intermediate scales (∼1 AU) is less certain. It is plausible that there is a zone adjacent to the inner disk in which turbulent heating self-consistently maintains the requisite ionization levels. But the region adjacent to the active outer disk is likely to be magnetically ``dead.'' Hall currents play a significant role in nebular magnetohydrodynamics.

Though still occasionally argued in the literature, there is simply no evidence to support the once standard claim that differential rotation in a Keplerian disk is prone to break down into shear turbulence by nonlinear instabilities. There is abundant evidence—numerical, experimental, and analytic—in support of the stabilizing role of Coriolis forces. Hydrodynamical turbulence is almost certainly not a source of enhanced turbulence in the solar nebula, or in any other astrophysical accretion disk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balbus, S.A., and Hawley, J. F.: 1991, 'A Powerful Local Shear Instability in Weakly Magnetized Disks', Astrophys. J. 376, 214–222.

    Article  ADS  Google Scholar 

  • Balbus, S.A., and Hawley, J. F.: 1992a, 'Is the Oort A-value a Universal Growth Rate Limit for Accretion Disk Shear Instabilities?', Astrophys. J. 392, 662–666.

    Article  ADS  Google Scholar 

  • Balbus, S.A., and Hawley, J. F.: 1992b, 'A Powerful Local Shear Instability in Weakly Magnetized Disks. IV. Nonaxisymmetric Perturbations', Astrophys. J. 400, 610–621.

    Article  ADS  Google Scholar 

  • Balbus, S.A., and Hawley, J. F.: 1998, 'Instability, Turbulence and Enhanced Transport in Accretion Disks', Rev. Mod. Phys. 70, 1–53.

    Article  ADS  Google Scholar 

  • Balbus, S.A., and Papaloizou, J.C.B.: 1999, 'Dynamical Foundations of α Disk Models', Astrophys. J. 521, 650–658.

    Article  ADS  Google Scholar 

  • Bayly, B. J., Orszag, S.A., and Herbert, T.: 1988, 'Instability Mechanisms in Shear-flow Transition', Ann. Rev. Fluid. Mech. 20, 359.

    Article  ADS  Google Scholar 

  • Blaes, O.M., and Balbus, S. A.: 1994, 'Local Shear Instabilities in Weakly Ionized, Weakly Magnetized Disks', Astrophys. J. 421, 163–177.

    Article  ADS  Google Scholar 

  • Brandenburg, A., Nordlund, A.A., Stein, R. F., and Torkelsson, U.: 1995, 'Dynamo Generated Turbulence and Large-scale Magnetic Fields in Keplerian Shear Flows', Astrophys. J. 446, 741–754.

    Article  ADS  Google Scholar 

  • Chandrasekhar, S.: 1960, 'The Stability of Non-dissipative Couette Flow in Hydromagnetics', Proc. Nat. Acad. Sci. 46, 253–257.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Dubrulle, B.: 1993, 'Differential Rotation as a Source of Angular Momentum Transfer in the Solar Nebula', Icarus 106, 59–76.

    Article  ADS  Google Scholar 

  • Fleming, T. P., Stone, J.M., and Hawley, J. F.: 1999, 'Effect of Resistivity on the Nonlinear Stage of the Magnetorotational Instability in Accretion Disks', Astrophys. J., submitted.

  • Frank, J., King, A., and Raine, D.: 1992, Accretion Power in Astrophysics, Cambridge Univers. Press, Cambridge, England.

    Google Scholar 

  • Gammie, C. F.: 1996, 'Layered Accretion in T Tauri Stars', Astrophys. J. 457, 355–362.

    Article  ADS  Google Scholar 

  • Gammie, C. F., and Menou, K.: 1998, 'On the Origin of Episodic Accretion in Dwarf Novae', Astrophys. J. 492, L75–L78.

    Article  ADS  Google Scholar 

  • Glassgold, A. E., Najita, J., and Igea, J.: 1997, 'X-Ray Photoionization of Protoplanetary Disks', Astrophys. J. 480, 344–350 (Erratum: Astrophys. J., 485, 920).

    Article  ADS  Google Scholar 

  • Goodman J., and Xu, G.: 1994, 'Parasitic Instabilities in Magnetized, Differentially Rotating Disks', Astrophys. J. 432, 213–223.

    Article  ADS  Google Scholar 

  • Hartmann, L., Kenyon, S., and Hartigan, P.: 1993, 'Young Stars, Episodic Phenomena, and Activity and Variability', in E.H. Levy and J. I. Lunine (eds.), Protostars and Planets III, Univers. Arizona Press, Tucson, pp. 497–518.

    Google Scholar 

  • Hawley, J. F., Balbus, S.A., and Winters, W.W.: 1999, 'Local Hydrodynamic Stability of Accretion Disks', Astrophys. J. 518, 394–404.

    Article  ADS  Google Scholar 

  • Hawley, J. F., Gammie, C., and Balbus, S.: 1995, 'Local Three-dimensional Magnetohydrodynamic Simulations of Accretion Disks', Astrophys. J. 440, 742–763.

    Article  ADS  Google Scholar 

  • Hawley, J. F., Balbus, S.A., and Winters, W. F.: 1999, 'Local Hydrodynamic Stability of Accretion Disks', Astrophys. J. 518, 394–404.

    Article  ADS  Google Scholar 

  • Königl, A.: 1991, 'Disk Accretion Onto Magnetic T Tauri stars', Astrophys. J. 370, L39–L43.

    Article  Google Scholar 

  • Landau, L.D., and Lifschitz, E.M.: 1959, Fluid Mechanics, Pergamon, Oxford, England.

    Google Scholar 

  • Jeffreys, H.: 1928, 'Some Cases of Instability in Fluid Motion', Proc. Roy. Soc. A 118, 195–208.

    MATH  ADS  Google Scholar 

  • Lin, D.N.C., and Papaloizou, J.C.B.: 1980, 'On the Structure and Evolution of the Primordial Solar Nebula', Monthly Notes Royal Astron. Soc. 191, 37–48.

    ADS  Google Scholar 

  • Lin, D.N.C., and Papaloizou, J.C.B.: 1996, 'Theory of Accretion Disks II: Application to Observed Systems', Ann. Rev. Astron. Astrophys. 34, 703–748.

    Article  ADS  Google Scholar 

  • Matsumoto, R., Uchida, Y., Hirose, S., Shibata, K., Hayashi, M. R., Ferrari, A., Bodo, G., and Norman, C.: 1996, 'Radio Jets and the Formation of Active Galaxies: Accretion Avalanches on the Torus by the Effect of a Large Scale Magnetic Field', Astrophys. J. 461, 115–126.

    Article  ADS  Google Scholar 

  • Nelson, A. F., Benz, W., Adams, F.C., and Arnett, D.: 1998, 'Dynamics of Circumstellar Disks', Astrophys. J. 502, 342–371.

    Article  ADS  Google Scholar 

  • Ogilvie, G., and Pringle, J. E.: 1996, 'The Non-axisymmetric Instability of a Cylindrical Shear Flow Containing an Azimuthal Magnetic Field', Monthly Notes Royal Astron. Soc. 279, 152–164.

    ADS  Google Scholar 

  • Pringle, J. E.: 1981, 'Accretion Disks in Astrophysics', Ann. Rev. Astron. Astrophys. 19, 137–162.

    Article  ADS  Google Scholar 

  • Papaloizou, J.C.B., and Lin, D.N.C.:1995, 'Theory of Accretion Disks I: Angular Momentum Transport Processes', Ann. Rev. Astron. Astrophys. 33, 505–540.

    ADS  Google Scholar 

  • Richard, D., and Zahn, J.-P.: 1999, 'Turbulence in Differentially Rotating Flows: What can be Learned From the Couette-Taylor Experiment?', Astron. Astrophys. 347, 734–738.

    ADS  Google Scholar 

  • Shakura, N. I., and Sunyaev, R.A.: 1973, 'Black Holes in Binary Systems. Observational Appearance', Astron. Astrophys. 24, 337–355.

    ADS  Google Scholar 

  • Stone, J.M., and Balbus, S.A.: 1996, 'Angular Momentum Transport in Accretion Disks via Convection', Astrophys. J. 464, 364–372.

    Article  ADS  Google Scholar 

  • Stone, J.M., Hawley, J. F., Gammie, C. F., and Balbus, S.A.: 1996, 'Three-dimensional Magnetohydrodynamical Simulations of Vertically Stratified Accretion Disks', Astrophys. J. 463, 656–673.

    Article  ADS  Google Scholar 

  • Stone, J.M., Gammie, C. F., Balbus, S.A., and Hawley, J. F.: 2000, 'Transport Processes in Protostellar Disks', in V. Mannings, A. P. Boss, and S. S. Russell (eds.), Protostars and Planets IV, Univ. Arizona Press, Tucson, in press.

    Google Scholar 

  • Strom, S. E., Edwards, S., and Skrutskie. M. F.: 1993, 'Evolutionary Time Scales for Circumstellar Disks Associated With Intermediate-and Late-type Stars', in E.H. Levy and J. I. Lunine, Protostars and Planets III, Univers. Arizona Press, Tucson, pp. 837–866.

    Google Scholar 

  • Tennekes, H., and Lumley, J. L.: 1972, A First Course in Turbulence, MIT Press, Cambridge, USA.

    Google Scholar 

  • Terquem, C., and Papaloizou, J.C.B: 1996, 'On the Stability of an Accretion Disk Containing a Toroidal Magnetic Field', Monthly Notes Royal Astron. Soc. 279, 767–784.

    ADS  Google Scholar 

  • Terquem, C., Papaloizou, J.C.B., and Nelson, R.B.: 2000, 'Disks, Extrasolar Planets, and Migration', Space Sci. Rev. 92, this volume.

  • Umebayashi, T., and Nakano, T.: 1988, 'Ionization State and Magnetic Fields in the Solar Nebula', Prog. Theo. Phys. Suppl. 96, 151–160.

    Google Scholar 

  • Velikhov, E. P.: 1959, 'Stability of an Ideally Conducting Liquid Flowing Between Cylinders Rotating in a Magnetic Field', Sov. Phy. JETP 36, 1398–1404.

    Google Scholar 

  • Wardle, M.: 1999, 'The Balbus-Hawley Instability in Weakly Ionised Disks', Monthly Notes Royal Astron. Soc. 307, 849–856.

    Article  ADS  Google Scholar 

  • Zel'dovich, Ya. B., Ruzmaikin, A.A., and Sokoloff, D.D.: 1983, Magnetic Fields in Astrophysics, Gordon and Breach, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balbus, S.A., Hawley, J.F. Solar Nebula Magnetohydrodynamics. Space Science Reviews 92, 39–54 (2000). https://doi.org/10.1023/A:1005293132737

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005293132737

Navigation