Skip to main content
Log in

Formation and Evolution of Corotating Interaction Regions and their Three Dimensional Structure

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Corotating interaction regions are a consequence of spatial variability in the coronal expansion and solar rotation, which cause solar wind flows of different speeds to become radially aligned. Compressive interaction regions are produced where high-speed wind runs into slower plasma ahead. When the flow pattern emanating from the Sun is roughly time-stationary these compression regions form spirals in the solar equatorial plane that corotate with the Sun, hence the name corotating interaction regions, or CIRs. The leading edge of a CIR is a forward pressure wave that propagates into the slower plasma ahead, while the trailing edge is a reverse pressure wave that propagates back into the trailing high-speed flow. At large heliocentric distances the pressure waves bounding a CIR commonly steepen into forward and reverse shocks. Spatial variation in the solar wind outflow from the Sun is a consequence of the solar magnetic field, which modulates the coronal expansion. Because the magnetic equator of the Sun is commonly both warped and tilted with respect to the heliographic equator, CIRs commonly have substantial north-south tilts that are opposed in the northern and southern hemispheres. Thus, with increasing heliocentric distance the forward waves in both hemispheres propagate toward and eventually across the solar equatorial plane, while the reverse shocks propagate poleward to higher latitudes. This paper provides an overview of observations and numerical models that describe the physical origin and radial evolution of these complex three-dimensional (3-D) heliospheric structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bame, S. J., Goldstein, B. E., Gosling, J. T., Harvey, J.W., McComas, D. J., Neugebauer, M., and Phillips, J. L.: 1993, ‘Ulysses Observations of a Recurrent High Speed Stream and the Heliomagnetic Streamer Belt’, Geophys. Res. Lett. 20, 2323–2326.

    Article  ADS  Google Scholar 

  • Belcher, J.W., and Davis, L.:1971, ‘Large-Amplitude Alfvén Waves in the Interplanetary Medium-II.’, J. Geophys. Res. 76, 3,534–3,563.

    Article  ADS  Google Scholar 

  • Borrini, G., Gosling, J. T., Bame, S. J., Feldman,W.C., and Wilcox, J. M.: 1981, ‘SolarWind Helium and Hydrogen Structure near the Heliospheric Current Sheet-A Signal of Coronal Streamers at 1AU’, J. Geophys. Res. 86, 4,565–4,573.

    Article  ADS  Google Scholar 

  • Bruno, R., Villante, U., Bavassano, B., Schwenn, R., and Mariani F.: 1986, ‘In-situ Observations of the Latitudinal Gradients of the Solar Wind Parameters during 1976 and 1977’, Sol. Phys. 104, 431–445.

    Article  ADS  Google Scholar 

  • Burlaga, L. F.: 1974, ‘Interplanetary Stream Interfaces’, J. Geophys. Res. 79, 3,717–3,725.

    Article  ADS  Google Scholar 

  • Burlaga, L. F.: 1983, ‘Corotating Pressure Waves without Fast Streams in the Solar Wind’, J. Geophys. Res. 88, 6,085–6,094.

    Article  ADS  Google Scholar 

  • Burlaga, L. F.: 1984, ‘MHD Processes in the Outer Heliosphere’, Space Sci. Rev. 39, 255–316.

    Article  ADS  Google Scholar 

  • Burlaga, L. F.: 1994, ‘Shocks in the Outer Heliosphere: Voyager 2 Observations from 18.9AU to 30.2 AU (1986–1989)’, J. Geophys. Res. 99, 4,161–4,171.

    ADS  Google Scholar 

  • Burlaga, L. F., Ness, N. F., Belcher, J.W., and Whang, Y. C.: 1996, ‘Pickup Protons and Pressure-Balanced Structures from 39 to 43 AU: Voyager 2 Observations during 1993 and 1994’, J. Geophys. Res. 99, 15,523–15,532.

    ADS  Google Scholar 

  • Burlaga, L. F., Ness, N. F., and Belcher, J.W.: 1997, ‘Radial Evolution of Corotating Merged Interaction Regions and Flows between _14AU and _43AU’, J. Geophys. Res. 102, 4,661–4,671.

    ADS  Google Scholar 

  • Burton, M. E., Smith, E. J., Balogh, A., Forsyth, R. J., Bame, S. J., Phillips, J. L., and Goldstein, B. E.: 1996, ‘Ulysses out-of-Ecliptic Observations of Interplanetary Shocks’, Astron. Astrophys. 316, 313–322.

    ADS  Google Scholar 

  • Carovillano, R. L., and Siscoe, G. L.: 1969, ‘Corotating Structure in the Solar Wind’, Sol. Phys. 8, 401–414.

    Article  ADS  Google Scholar 

  • Coles, W. A.: 1995, ‘Interplanetary Scintillation Observations of the High-Latitude Solar Wind’, Space Sci. Rev. 72, 211–222.

    Article  ADS  Google Scholar 

  • Dryer, M., Smith, Z.K., Smith, E. J., Mihalov, J. D., Wolfe, J.H., Steinolfson, R. S., and Wu, S.T.: 1978, ‘MHD Modeling of Solar Wind Corotating Stream Interaction Regions Observed by Pioneer 10 and 11’, J. Geophys. Res. 83, 4,347–4,352.

    ADS  Google Scholar 

  • Feldman, W.C., Asbridge, J.R., Bame, S. J., Fenimore, E. E., and Gosling, J. T.: 1981, ‘The Solar Origin of Solar Wind Interstream Flows: Near Equatorial Coronal Streamers’, J. Geophys. Res. 86, 5,408–5,416.

    ADS  Google Scholar 

  • Fisk, L.A.: 1996, ‘Motion of the Footpoints of Heliospheric Magnetic Field Lines at the Sun: Implications for Recurrent Energetic Particle Events at High Heliographic Latitudes’, J. Geophys. Res. 101, 15,547-15,553.

    Article  ADS  Google Scholar 

  • Gazis, P. R., Mihalov, J.D., Barnes, A., Lazarus, A. J., and Smith, E. J.: 1989, ‘Pioneer and Voyager Observations of the Solar Wind at Large Heliocentric Distances and Latitudes’, Geophys. Res. Lett. 16, 223–226.

    Article  ADS  Google Scholar 

  • Gloeckler, G., Geiss, J., Roelof, E. C., Fisk, L. A., Ipavich, F.M., Ogilvie, K.W., Lanzerotti, L. J., von Steiger, R., and Wilken, B.: 1994, ‘Acceleration of Interstellar Pickup Ions in the Disturbed Solar Wind Observed on Ulysses’, J. Geophys. Res. 99, 17,637–17,643.

    Article  ADS  Google Scholar 

  • Gosling, J. T.: 1986, ‘Global Aspects of Stream Evolution in the Solar Wind’, in R. I. Epstein and W. C. Feldman(eds.), Magnetospheric Phenomena in Astrophysics, AIP Conf. Proceed.144, New York, pp. 124–144.

  • Gosling, J. T.: 1996, ‘Corotating and Transient Solar Wind Flows in Three Dimensions’, Ann. Rev. Astron. Astrophys. 34, 35–73.

    Article  ADS  Google Scholar 

  • Gosling, J. T., Hundhausen, A. J., Pizzo, V., and Asbridge, J.R.: 1972, ‘Compressions and Rarefactions in the Solar Wind: Vela 3’, J. Geophys. Res. 77, 5,442–5,454.

    ADS  Google Scholar 

  • Gosling, J. T., Hundhausen, A. J., and Bame, S. J.: 1976, ‘Solar wind Stream Evolution at Large Heliocentric Distances: Experimental Demonstration and Test of a Model’, J. Geophys. Res. 81, 2,111–2,122.

    ADS  Google Scholar 

  • Gosling, J. T., Asbridge, J. R., Bame, S. J., and Feldman,W.C.: 1978, ‘SolarWind Stream Interfaces’, J. Geophys. Res. 83, 1,401–1,412.

    Article  ADS  Google Scholar 

  • Gosling, J. T., Borrini, G., Asbridge, J. R., Bame, S. J., Feldman, W.C., and Hansen, R. F.: 1981, ‘Coronal Streamers in the Solar Wind at 1AU’, J. Geophys. Res. 86, 5,438–5,448.

    ADS  Google Scholar 

  • Gosling, J. T., Bame, S. J., McComas, D. J., Phillips, J. L., Pizzo, V. J., Goldstein, B. E., and Neugebauer, M.: 1993, ‘Latitudinal Variation of Solar Wind Corotating Stream Interaction Regions: Ulysses’, Geophys. Res. Lett. 20, 2789–2792.

    Article  ADS  Google Scholar 

  • Gosling, J. T., Bame, S. J., McComas, D. J., Phillips, J. L., Pizzo, V. J., Goldstein, B. E., and Neugebauer, M.: 1995a, ‘SolarWind Corotating Interaction Regions out of the Ecliptic Plane: Ulysses’, Space Sci. Rev. 72, 99–104.

    Article  ADS  Google Scholar 

  • Gosling, J. T., Bame, S. J., Feldman, W.C., McComas, D. J., Phillips, J. L., Goldstein, B. E., Neugebauer, M., Burkepile, J., Hundhausen, A. J., and Acton, L.: 1995b, ‘The Band of Solar Wind Variability at Low Heliographic Latitudes near Solar Activity Minimum: Plasma Results from the Ulysses Rapid Latitude Scan’, Geophys. Res. Lett. 22, 3329–3332.

    Article  ADS  Google Scholar 

  • Gosling, J. T., Feldman, W.C., McComas, D. J., Phillips, J. L., Pizzo, V. J., and Forsyth, R. J.: 1995c, ‘Ulysses Observations of Opposed Tilts of Solar Wind Corotating Interaction Regions in the Northern and Southern Solar Hemispheres’, J. Geophys. Res. 22, 3,333–3,336.

    Google Scholar 

  • Gosling, J. T., Bame, S. J., Feldman, W.C., McComas, D. J., Riley, P., Goldstein, B. E., and Neugebauer, M.: 1997, ‘The Northern Edge of the Band of SolarWind Variability, Ulysses at_4.5AU’, Geophys. Res. Lett. 24, 309–312.

    Article  ADS  Google Scholar 

  • Hoeksema, J. T.: 1995, ‘The Large-Scale Structure of the Heliospheric Current Sheet during the Ulysses Epoch’, Space Sci. Rev. 72, 137–148.

    Article  ADS  Google Scholar 

  • Hundhausen, A. J.: 1972, Coronal Expansion and Solar Wind, Springer-Verlag, New York.

    Google Scholar 

  • Hundhausen, A. J.: 1973, ‘Nonlinear Model of High-Speed Solar Wind Streams’, J. Geophys. Res. 78, 1,528–1,542.

    ADS  Google Scholar 

  • Hundhausen, A. J.: 1977, ‘An Interplanetary View of Coronal Holes’, in J. B. Zirker (ed.), Coronal Holes and High Speed Wind Streams, Colorado Assoc. Univ. Press., Boulder, pp. 225–329.

    Google Scholar 

  • Hundhausen, A. J., and Gosling, J. T.: 1976, ‘Solar Wind Structure at Large Heliocentric Distances: An Interpretation of Pioneer 10 Observations’, J. Geophys. Res. 81, 1,436–1,440.

    Article  ADS  Google Scholar 

  • Jokipii, J.R., and Davis, L. Jr.: 1969, ‘Long-Wavelength Turbulence and the Heating of the Solar Wind’, Astrophys. J. 156, 1101–1106.

    Article  ADS  Google Scholar 

  • Jokipii, R. J., and Thomas, B.: 1981, ‘Effects of Drift on the Transport of Cosmic-Rays-IV. Modulation by a Wavy Current Sheet’, Astrophys. J. 243, 1115–1122.

    Article  ADS  Google Scholar 

  • Kóta, J.: 1992, ‘A Numerical Model of the Large-Scale Solar Wind in the Outer Heliosphere’, in E. Marsch and R. Schwenn(eds.), Solar Wind Seven, Pergamon, New York, pp. 205–208.

    Google Scholar 

  • Krieger, A. S., Timothy, A. F., and Roelof, E.C.: 1973, ‘A Coronal Hole and its Identification as the Source of a High Velocity Solar Wind Stream’, Sol. Phys. 29, 505–525.

    Article  ADS  Google Scholar 

  • Lallement, R., Bertaux, J. L., and Kurt, V.G.: 1985, ‘Solar Wind Decrease at High Heliocentric Latitudes Detected from Prognoz Interplanetary Lyman-??Mapping’, J. Geophys. Res. 90, 1,413–1,423.

    Article  ADS  Google Scholar 

  • McNutt, R. L., Jr.: 1988, ‘Possible Explanations of North-South Plasma Flow in the Outer Heliosphere and Meridional Transport of Magnetic Flux’, Geophys. Res. Lett. 15, 1523–1526.

    Article  ADS  Google Scholar 

  • Ogilvie, K.W.: 1972, ‘Corotating Shock Structures’, in P. J. Coleman, C. P. Sonett, and J.M. Wilcox (eds.), Solar Wind, NASA SP 308, Washington DC, pp. 430–434.

  • Parker, E.N.: 1963, Interplanetary Dynamical Processes, John Wiley, New York.

    MATH  Google Scholar 

  • Phillips, J. L., Balogh, A., Bame, S. J., Goldstein, B. E., Gosling, J. T., Hoeksema, J. T., McComas, D. J., Neugebauer, M., Sheeley, N.R., and Wang, Y.-M.: 1994, ‘Ulysses at 50_ South: Constant Immersion in the High-Speed Solar Wind’, J. Geophys. Res. 21, 1,105–1,108.

    Google Scholar 

  • Pizzo, V. J.: 1978, ‘A Three-Dimensional Model of Corotating Streams in the Solar Wind-I. Theoretical Foundations’, J. Geophys. Res. 83, 5,563–5,572.

    Article  ADS  Google Scholar 

  • Pizzo, V. J.: 1980, ‘A Three-Dimensional Model of Corotating Streams in the Solar Wind-II. Hydrodynamic Streams’, J. Geophys. Res. 85, 727–743.

    Article  ADS  Google Scholar 

  • Pizzo, V. J.: 1982, ‘A Three-Dimensional Model of Corotating Streams in the Solar Wind-III. Magnetohydrodynamic Streams’, J. Geophys. Res. 87, 4,374–4,394.

    Article  ADS  Google Scholar 

  • Pizzo, V. J.: 1991, ‘The Evolution of Corotating Stream Fronts near the Ecliptic Plane in the Inner Solar System-II. Three-Dimensional Tilted-Dipole Fronts’, J. Geophys. Res. 96, 5,405–5,420.

    Article  ADS  Google Scholar 

  • Pizzo, V. J.: 1994a, ‘Global, Quasi-Steady Dynamics of the Distant Solar Wind-I. Origins of North-South Flows in the Outer Heliosphere’, J. Geophys. Res. 99, 4,173–4,183.

    ADS  Google Scholar 

  • Pizzo, V. J.: 1994b, ‘Global, Quasi-Steady Dynamics of the Distant Solar Wind-II. Deformation of the Heliospheric Current Sheet’, J. Geophys. Res. 99, 4,185–4,191.

    ADS  Google Scholar 

  • Pizzo, V. J., and Gosling, J. T.: 1994, ‘Three-dimensional Simulation of High-Latitude Interaction Regions: Comparison with Ulysses Results’, Geophys. Res. Lett. 21, 2063–2066.

    Article  ADS  Google Scholar 

  • Pizzo, V. J., Intriligator, D. S., and Siscoe, G. L.: 1995, ‘Two-dimensional Radial-Alignment Simulation of Solar Wind Streams Observed by Pioneer 10 and 11 in 1974’, J. Geophys. Res. 100, 12,251–12,260.

    Article  ADS  Google Scholar 

  • Pneuman, G.W., and Kopp, R. A.: 1971, ‘Gas-Magnetic Field Interactions in the Solar Corona’, Sol. Phys. 18, 258–270.

    Article  ADS  Google Scholar 

  • Richter, A. K., and Luttrell, A. H.: 1986, ‘Superposed Epoch Analysis of Corotating Interaction Regions at 0.3 and 1.0AU: A Comparative Study’, J. Geophys. Res. 91, 5,873–5,878.

    Article  ADS  Google Scholar 

  • Riley, P., Gosling, J. T., Weiss, L. A., and Pizzo, V. J.: 1996, ‘The Tilts of Corotating Interaction Regions at Mid-Heliograhic Latitudes’, J. Geophys. Res. 101, 24,349-24,357.

    ADS  Google Scholar 

  • Sarabhai, V.: 1963, ‘Some Consequences of Nonuniformity of Solar-Wind Velocity’, J. Geophys. Res. 68, 1,555–1,557.

    Article  ADS  Google Scholar 

  • Schwenn, R.: 1990, ‘Large-Scale Structure of the Interplanetary Medium’, in R. Schwenn and E. Marsch(eds.), Physics of the Inner Heliosphere, Springer-Verlag, Berlin Heidelberg, pp. 99–181.

    Google Scholar 

  • Sime, D.G.: 1983, ‘Interplanetary Scintillation Observations of the Solar Wind Close to the Sun and out of the Ecliptic’, in M. Neugebauer (ed.), Solar Wind Five, NASA CP 2280, pp. 453–467.

  • Siscoe, G. L.: 1972, ‘Structure and Orientation of Solar Wind Interaction Fronts: Pioneer 6’, J. Geophys. Res. 77, 27–34.

    Article  ADS  Google Scholar 

  • Siscoe, G. L.: 1976, ‘Three-Dimensional Aspects of Interplanetary Shock Waves’, J. Geophys. Res. 81, 6,235–6,241.

    ADS  Google Scholar 

  • Siscoe, G. L., Goldstein, B., and Lazarus, A. J.: 1969, ‘An East-West Asymmetry in the Solar-Wind Velocity’, J. Geophys. Res. 74, 1,759–1,762.

    ADS  Google Scholar 

  • Smith, E. J., and Wolfe, J.H.: 1976, ‘Observations of Interaction Regions and Corotating Shocks between One and Five AU: Pioneers 10 and 11’, J. Geophys. Res. 3, 137-140.

    Google Scholar 

  • Suess, S. T., Hundhausen, A. J., and Pizzo, V.: 1975, ‘Latitude-Dependent Nonlinear High-Speed Solar Wind Streams’, J. Geophys. Res. 80, 2,023–2,029.

    Article  ADS  Google Scholar 

  • Whang, Y.C., and Burlaga, L. F.: 1988, ‘Evolution of Recurrent Solar Wind Structures between 14 AU and the Termination Shock’, J. Geophys. Res. 93, 5,446–5,460.

    ADS  Google Scholar 

  • Wimmer-Schweingruber, R. F., von Steiger, R., and Paerli, R.: 1997, ‘SolarWind Stream Interfaces in Corotating Interaction Regions: SWICS/Ulysses Results’, J. Geophys. Res. 102, 17,404-17,417.

    Article  ADS  Google Scholar 

  • Zhao, X. P., and Hundhausen, A. J.: 1981, ‘Organization of SolarWind Plasma Properties in a Tilted, Heliomagnetic Coordinate System’, J. Geophys. Res. 86, 5,423–5,430.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gosling, J., Pizzo, V. Formation and Evolution of Corotating Interaction Regions and their Three Dimensional Structure. Space Science Reviews 89, 21–52 (1999). https://doi.org/10.1023/A:1005291711900

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005291711900

Keywords

Navigation