Skip to main content
Log in

The sl2 Loop Algebra Symmetry of the Six-Vertex Model at Roots of Unity

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We demonstrate that the six vertex model (XXZ spin chain) with Δ=(q+q-1)/2 and q2N=1 has an invariance under the loop algebra of sl2 which produces a special set of degenerate eigenvalues. For Δ=0 we compute the multiplicity of the degeneracies using Jordan–Wigner techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. H. Lieb, Exact solution of the problem of the entropy of two-dimensional ice, Phys. Rev. Letts. 18:692 (1967).

    Google Scholar 

  2. E. H. Lieb, Exact solution of the F model of an antiferroelectric, Phys. Rev. Lett. 18:1046 (1967).

    Google Scholar 

  3. E. H. Lieb, Exact solution of the two-dimensional Slater KDP model of a ferroelectric, Phys. Rev. Lett. 19:108 (1967).

    Google Scholar 

  4. E. H. Lieb, Residual entropy of square ice, Phys. Rev. 162:162 (1967).

    Google Scholar 

  5. B. Sutherland, Exact solution of a two-dimensional model for hydrogen bonded crystals, Phys. Rev. Lett. 19:103 (1967).

    Google Scholar 

  6. C. P. Yang, Exact solution of two dimensional ferroelectrics in an arbitrary external field, Phys. Rev. Lett. 19:586 (1967).

    Google Scholar 

  7. B. Sutherland, C. N. Yang, and C. P. Yang, Exact solution of two dimensional ferroelectrics in an arbitrary external field, Phys. Rev. Lett. 19:588 (1967).

    Google Scholar 

  8. H. A. Bethe, Zur Theorie der Metalle, Z. Physik 71:205 (1931).

    Google Scholar 

  9. E. Hulthen, Über das Austauschproblem eines Kristalles, Arkiv. Mat. Astron. Fysik 26A, No. 11 (1938).

  10. R. Orbach, Linear antiferromagnetic chain with anisotropic coupling, Phys. Rev. 112:309 (1958).

    Google Scholar 

  11. L. R. Walker, Antiferromagnetic linear chain, Phys. Rev. 116:1089 (1959).

    Google Scholar 

  12. J. des Cloizeaux and M. Gaudin, Anisotropic linear magnetic chain, J. Math. Phys. 7:1384 (1966).

    Google Scholar 

  13. C. N. Yang and C. P. Yang, One-dimensional chain of anisotropic spin-spin interactions, Phys. Rev. 150:321 (1966); 327 (1966).

    Google Scholar 

  14. R. J. Baxter, Eight-vertex model in lattice statistics, Phys. Rev. Lett. 26:832 (1971); One-dimensional anisotropic Heisenberg chain, Phys. Rev. Lett. 26:834 (1971).

    Google Scholar 

  15. R. J. Baxter, Partition function of the eight-vertex lattice model, Ann. Phys. 70:193 (1972).

    Google Scholar 

  16. R. J. Baxter, Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain I: Some fundamental eigenvectors, Ann. Phys. 76:1 (1973).

    Google Scholar 

  17. R. J. Baxter, Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain II: Equivalence to a generalized ice-type lattice model, Ann. Phys. 76:25 (1973).

    Google Scholar 

  18. R. J. Baxter, Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain III: Eigenvectors of the transfer matrix and the Hamiltonian, Ann. Phys. 76:48 (1973).

    Google Scholar 

  19. G. E. Andrews, R. J. Baxter, and P. J. Forrester, Eight-vertex SOS model and generalized Rogers-Ramanujan-type identities, J. Stat. Phys. 35:193 (1984).

    Google Scholar 

  20. L. Onsager, Crystal statistics I: A two dimensional model with an order disorder transition, Phys. Rev. 65:117 (1944).

    Google Scholar 

  21. E. Lieb, T. Schultz, and D. Mattis, Two soluble models of an antiferromagnetic chain, Ann. Phys. 16:407 (1961).

    Google Scholar 

  22. P. Jordan and E. Wigner, Über das Paulische Äquivalenzverbot, Z. Physik 47:631 (1928).

    Google Scholar 

  23. V. Pasquier and H. Saleur, Common structures between finite systems and conformal field theory through quantum groups, Nucl. Phys. B 330:523 (1990).

    Google Scholar 

  24. M. Jimbo, A q-analogue of U(gl(N + 1)), Hecke algebra, and the Yang_Baxter equation, Lett. Math. Phys. 11:247 (1986).

    Google Scholar 

  25. G. Lusztig, Quantum deformations of certain simple modules over enveloping algebras, Adv. in Math. 70:237 (1988).

    Google Scholar 

  26. G. Lusztig, Modular representations and quantum groups, Contemp. Math. 82:59 (1989).

    Google Scholar 

  27. C. de Concini and V. Kac, Representations of quantum groups at roots of 1, in Operator Algebras, Unitary Representation, Enveloping Algebras, and Invariant Theory, A. Connes et al., eds. (Progress in Mathematics 92, Birkhäuser, Basel 1990), p. 471.

    Google Scholar 

  28. G. Lusztig, Introduction to Quantum Groups (Birkäuser, 1993).

  29. V. G. Kac, Infinite Dimensional Lie Algebras, 3rd ed. (Cambridge University Press, 1990).

  30. A. B. Zamolodchikov and V. A. Fateev, Nonlocal (parafermion) currents in two-dimensional quantum field theory and self dual critical points in Z N symmetric statistical mechanics, Sov. Phys. JETP 62:215 (1985).

    Google Scholar 

  31. Y. Akutsu and M. Wadati, Exactly solvable models and new link polynomials I. N-State vertex models, J. Phys. Soc. Jpn. 56:3039 (1987).

    Google Scholar 

  32. T. Deguchi, M. Wadati, and Y. Akutsu, Exactly solvable models and new link polynomials V. Yang_Baxter operators and braid-monoid algebra, J. Phys. Soc. Jpn. 57:1905 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deguchi, T., Fabricius, K. & McCoy, B.M. The sl2 Loop Algebra Symmetry of the Six-Vertex Model at Roots of Unity. Journal of Statistical Physics 102, 701–736 (2001). https://doi.org/10.1023/A:1004894701900

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004894701900

Navigation