Skip to main content
Log in

Spontaneous Magnetization in the Plane

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The Arak process is a solvable stochastic process which generates coloured patterns in the plane. Patterns are made up of a variable number of random non-intersecting polygons. We show that the distribution of Arak process states is the Gibbs distribution of its states in thermodynamic equilibrium in the grand canonical ensemble. The sequence of Gibbs distributions forms a new model parameterised by temperature. We prove that there is a phase transition in this model, for some non-zero temperature. We illustrate this conclusion with simulation results. We measure the critical exponents of this off-lattice model and find they are consistent with those of the Ising model in two dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. T. Arak, On Markovian random fields with a finite number of values, in 4th USSR-Japan Symposium on Probability Theory and Mathematical Statistics: Abstracts of Communications (Tiblisi, 1982).

  2. T. Arak, P. Clifford, and D. Surgailis, Point based polygonal models for random graphs, Advances in Applied Probability 25:348-372 (1993).

    Google Scholar 

  3. T. Arak and D. Surgailis, Markov fields with Polygonal realizations, Probability Theory Related Fields 80:543-579 (1989).

    Google Scholar 

  4. K. Binder, Finite size scaling analysis of Ising model block distribution functions, Z. Phys. B 43:119-140 (1981).

    Google Scholar 

  5. P. Clifford and G. K. Nicholls, Simulating Polygonal shape models with data, Technical report (Statistics Department, Oxford University, 1994).

  6. D. Frenkel, Advanced Monte Carlo techniques, in Computer Simulation in Chemical Physics, Vol. C397 of Nato ASI Series, M. P. Allen and D. J. Tildesley, eds. (Kluwer Academic Publications, Dordrecht, 1993).

    Google Scholar 

  7. H. O. Georgii, Phase transition and percolation in Gibbsian particle models, in Conference Proceedings of Wuppertal, February 1999, Lecture Notes in Physics (Springer-Verlag, 1999).

  8. H. O. Georgii and O. Häggström, Phase transition in continuum Potts models, Commun. Math. Phys. 181:507-528 (1996).

    Google Scholar 

  9. C. J. Geyer and J. Møller, Simulation and likelihood inference for spatial point processes, Scandinavian Journal of Statistics 21:359-373 (1994).

    Google Scholar 

  10. C. J. Geyer, Practical Markov chain Monte Carlo, Statistical Science 7:473-511 (1992).

    Google Scholar 

  11. P. J. Green, Reversible jump Markov chain Monte Carlo computation and Bayesian model determination, Biometrika 82:711-732 (1995).

    Google Scholar 

  12. R. B. Griffiths, Peierls' proof of spontaneous magnetization of a two dimensional Ising ferromagnet, Phys. Rev. A 136:437-439 (1964).

    Google Scholar 

  13. G. Johnson, H. Gould, J. Machta, and L. K. Chayes, Monte Carlo study of the Widom-Rowlinson fluid using cluster methods, Phys. Rev. Lett. 79:2612-2615 (1997).

    Google Scholar 

  14. J. L. Lebowitz and E. K. Lieb, Phase transitions in a continuum classical system with finite interactions, Phys. Lett. 39A:98-100 (1972).

    Google Scholar 

  15. J. L. Lebowitz, A. E. Mazel, and E. Presutti, Rigorous proof of a liquid-vapor phase transition in a continuum particle system, Phys. Rev. Lett. 80:4701-4704 (1998).

    Google Scholar 

  16. G. E. Norman and V. S. Filinov, Investigations of phase transitions by a Monte Carlo method, High Temperature 7:216-222 (1969). Translation, Journal also known as High Temperature Research USSR.

    Google Scholar 

  17. D. Ruelle, A phase transition in a continuous classical system, Phys. Rev. Lett. 27:1040-1041 (1971).

    Google Scholar 

  18. A. Sokal, Monte Carlo methods in Statistical Mechanics, in Cours de Troisième Cycle de la Physique en Suisse Romande, Lausanne (1989).

  19. R. Sun, H. Could, J. Machta, and L. W. Chayes, Cluster Monte Carlo study of multi-component fluids of the Stillinger-Helfand and Widom-Rowlinson type, Technical report (Physics Dept., Clark University, Worcester, USA, 2000).

    Google Scholar 

  20. D. Surgailis, The thermodynamic limit of Polygonal models, Acta Appl. Math. 22:77-102 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicholls, G.K. Spontaneous Magnetization in the Plane. Journal of Statistical Physics 102, 1229–1251 (2001). https://doi.org/10.1023/A:1004888211837

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004888211837

Navigation