Skip to main content
Log in

Tiles and Colors

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Tiling models are classical statistical models in which different geometric shapes, the tiles, are packed together such that they cover space completely. In this paper we discuss a class of two-dimensional tiling models in which the tiles are rectangles and isosceles triangles. Some of these models have been solved recently by means of Bethe Ansatz. We discuss the question why only these models in a larger family are solvable, and we search for the Yang–Baxter structure behind their integrability. In this quest we find the Bethe Ansatz solution of the problem of coloring the edges of the square lattice in four colors, such that edges of the same color never meet in the same vertex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. Penrose, The role of aesthetics in pure and applied mathematical research, Bull. Inst. Math. Appl. 10: 266 (1974).

    Google Scholar 

  2. L. J. Shaw, V. Elser, and C. L. Henley, Long-range order in a three-dimensional random-tiling quasicrystal, Phys. Rev. B 43: 3423 (1991).

    Google Scholar 

  3. V. Elser, Comment on “Quasicrystals: A new class of ordered structures', ” Phys. Rev. Lett. 54: 1730 (1985); and Indexing problems in quasicrystals diffraction, Phys. Rev. B 32: 4892 (1985).

    Google Scholar 

  4. L. H. Tang, Random-tiling quasi-crystal in 3 dimensions, Phys. Rev. Lett. 64: 2390 (1990).

    Google Scholar 

  5. K. J. Strandburg, Random-tiling quasicrystal, Phys. Rev. B 40: 6071 (1989).

    Google Scholar 

  6. C. Richard, M. Hoffe, J. Hermisson, and M. Baake, Random tilings: Concepts and examples, J. Phys. A 31: 6382 (1998).

    Google Scholar 

  7. P. W. Kasteleyn, The statistics of dimers on a lattice, Physica 27: 1209 (1961); and H. N. V. Temperley and M. E. Fisher, Phil. Mag. [8th Ser.] 6: 1061 (1961).

    Google Scholar 

  8. R. J. Baxter, Hard hexagons: Exact solution, J. Phys. A 13: L61 (1980).

    Google Scholar 

  9. C. L. Henley, Random tilings with quasicrystal order: Transfer-matrix approach, J. Phys. A 21: 1649 (1988).

    Google Scholar 

  10. M. Widom, Bethe Ansatz solution of the square-triangle random tiling model, Phys. Rev. Lett. 70: 2094 (1993).

    Google Scholar 

  11. P. A. Kalugin, The square-triangle random-tiling model in the thermodynamic limit, J. Phys. A 27: 3599 (1994).

    Google Scholar 

  12. J. de Gier and B. Nienhuis, Exact solution of an octagonal tiling model, Phys. Rev. Lett. 76: 2918–2921 (1996); and J. de Gier and B. Nienhuis, The exact solution of an octagonal rectangle-triangle random tiling, J. Stat. Phys. 87: 415 (1997).

    Google Scholar 

  13. J. de Gier and B. Nienhuis, Bethe Ansatz solution of a decagonal rectangle-triangle random tiling, J. Phys. A 31: 2141–2154 (1998).

    Google Scholar 

  14. H. W. J. Bloöte and H. J. Hilhorst, Roughening transitions and the zerotemperature triangular Ising antiferromagnet, J. Phys. A 15: L631 (1982).

    Google Scholar 

  15. R. J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic Press, London, 1982).

    Google Scholar 

  16. J. de Gier and B. Nienhuis, Integrability of the square-triangle random tiling model, Phys. Rev. E 55: 3926 (1997).

    Google Scholar 

  17. J. H. H. Perk and C. L. Schultz, New families of commuting transfer matrices in q-state vertex models, Phys. Lett. A 84: 407 (1981).

    Google Scholar 

  18. N. Y. Reshetikhin, A new exactly solvable case of an O(n) model on a hexagonal lattice, J. Phys. A 24: 2387 (1991).

    Google Scholar 

  19. R. J. Baxter, Coloring of a hexagonal lattice, J. Math. Phys. 11: 784 (1970).

    Google Scholar 

  20. E. Cockayne, Atomistic octagonal random-tiling model, J. Phys. A: Math. Gen. 27: 6107 (1994).

    Google Scholar 

  21. J. Kondev and C. L. Henley, Four-coloring model on the square lattice a critical ground-state, Phys. Rev. B 52: 6628 (1995).

    Google Scholar 

  22. J. L. Jacobsen, On the universality of fully packed loop models, J. Phys. A 32: 5445 (1999), and S. Higuchi, Compact polymers on decorated square lattices, J. Phys. A 32: 3697 (1999).

    Google Scholar 

  23. M. T. Batchelor, H. W. J. Bloöte, B. Nienhuis, and C. M. Yung, Critical behavior of the fully packed loop model on the square lattice, J. Phys. A 29: L399 (1996).

    Google Scholar 

  24. J. L. Jacobsen and J. Kondev, Field theory of compact polymers on the square lattice, Nucl. Phys. B 532: 635 (1998); and J. Kondev and J. L. Jacobsen, Conformational entropy of compact polymers, Phys. Rev. Lett. 81: 2922 (1998).

    Google Scholar 

  25. M. J. M. Martins, Integrable mixed vertex models from braid monoid algebra, in Statistical Physics on the Eve of the 21st Century, Vol. 14 of the Series on Advances in Statistical Mechanics, M. T. Bachelor and L. T. Wille, eds. (World Scientific, Singapore, 1999), also available as solv-int/9903006.

    Google Scholar 

  26. P. D. Francesco, Folding the square diagonal lattice, Nucl. Phys. B 525: 507 (1998) and Nucl. Phys. B 528: 453 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nienhuis, B. Tiles and Colors. Journal of Statistical Physics 102, 981–996 (2001). https://doi.org/10.1023/A:1004867423281

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004867423281

Navigation