Skip to main content
Log in

Fisher Information Matrix of Husimi Distribution

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We calculate the Fisher information matrix of Husimi distribution in the Fock–Bargmann representation. It turns out that the Fisher information of the position and that of the momentum move in opposite directions, and that a weighted trace of the Fisher information matrix is a constant independent of the Husimi distribution. This may be interpreted as a kind of uncertainty relation (in the spirit of Heisenberg uncertainty principle) from the statistical inference point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. Amari, Information geometry, in Geometry and Nature, H. Nencka and J. P. Bourguignon, eds. (American Mathematical Society, Providence, 1994), pp. 81-95.

    Google Scholar 

  2. V. Bargmann, On a Hilbert space of holomorphic functions and an associated integral transform, Commun. Pure Appl. Math. 14:187-214 (1961).

    Google Scholar 

  3. E. R. Caianielle, Quantum and other physics as system theory, La Rivista del Nuovo Cimento 15:1-65 (1992).

    Google Scholar 

  4. E. Carlen, Some integral identities and inequalities for entire functions and their applications to coherent state transform, J. Funct. Anal. 97:231-249 (1991).

    Google Scholar 

  5. E. Carlen, Superadditivity of Fisher's information and logarithmic Sobolev inequalities, J. Funct. Anal. 101:194-211 (1991).

    Google Scholar 

  6. R. A. Fisher, Theory of statistical estimation, Proc. Camb. Phil. Soc. 22:700-725 (1925).

    Google Scholar 

  7. B. R. Frieden, Physics from Fisher Information, a Unification (Cambridge University Press, 1998).

  8. L. Gross, Logarithmic Sobolev inequality, Amer. J. Math. 97:1061-1083 (1975).

    Google Scholar 

  9. M. Hillery, R. E. O'Connel, M. O. Scully, and E. P. Wigner, Distribution functions in physics: fundamentals, Phys. Rep. 106:121-167 (1984).

    Google Scholar 

  10. K. Husimi, Some formal properties of the density matrix, Proc. Phys. Math. Soc. Japan 22:264-283 (1940).

    Google Scholar 

  11. E. T. Jaynes, Information theory and statistical mechanics, Phys. Rev. 106:620-630 (1957).

    Google Scholar 

  12. H. W. Lee, Theory and applications of the quantum phase-space distribution functions, Phys. Rep. 259:147-211 (1995).

    Google Scholar 

  13. C. R. Rao, Information and accuracy attainable in the estimation of statistical parameters, Bull. Calcutta Math. Soc. 37:81-91 (1945).

    Google Scholar 

  14. A. Wehrl, On the relation between classical and quantum entropy, Rep. Math. Phys. 16:353-358 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, S. Fisher Information Matrix of Husimi Distribution. Journal of Statistical Physics 102, 1417–1428 (2001). https://doi.org/10.1023/A:1004856832310

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004856832310

Navigation