Skip to main content
Log in

Kinetic Models for Granular Flow

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The generalization of the Boltzmann and Enskog kinetic equations to allow inelastic collisions provides a basis for studies of granular media at a fundamental level. For elastic collisions the significant technical challenges presented in solving these equations have been circumvented by the use of corresponding model kinetic equations. The objective here is to discuss the formulation of model kinetic equations for the case of inelastic collisions. To illustrate the qualitative changes resulting from inelastic collisions the dynamics of a heavy particle in a gas of much lighter particles is considered first. The Boltzmann–Lorentz equation is reduced to a Fokker–Planck equation and its exact solution is obtained. Qualitative differences from the elastic case arise primarily from the cooling of the surrounding gas. The excitations, or physical spectrum, are no longer determined simply from the Fokker–Planck operator, but rather from a related operator incorporating the cooling effects. Nevertheless, it is shown that a diffusion mode dominates for long times just as in the elastic case. From the spectral analysis of the Fokker–Planck equation an associated kinetic model is obtained. In appropriate dimensionless variables it has the same form as the BGK kinetic model for elastic collisions, known to be an accurate representation of the Fokker–Planck equation. On the basis of these considerations, a kinetic model for the Boltzmann equation is derived. The exact solution for states near the homogeneous cooling state is obtained and the transport properties are discussed, including the relaxation toward hydrodynamics. As a second application of this model, it is shown that the exact solution for uniform shear flow arbitrarily far from equilibrium can be obtained from the corresponding known solution for elastic collisions. Finally, the kinetic model for the dense fluid Enskog equation is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. M. Jaeger, S. R. Nagel, and R. P. Behringer, Physics Today 49(4):32 (1996); Rev. Mod. Phys. 68:1259 (1996).

    Google Scholar 

  2. A. Goldshtein and M. Shapiro, J. Fluid Mech. 54:47 (1987).

    Google Scholar 

  3. J. J. Brey, J. W. Dufty, and A. Santos, J. Stat. Phys. 87:1051 (1997).

    Google Scholar 

  4. T. P. C. van Noije, M. H. Ernst, and R. Brito, Physica A 251:266 (1997).

    Google Scholar 

  5. C. Cercignani, Theory and Application of the Boltzmann Equation (Elsevier, New York, 1975), pp. 166–181.

    Google Scholar 

  6. J. J. Brey, F. Moreno, and J. W. Dufty, Phys. Rev. E 54:445 (1996).

    Google Scholar 

  7. J. W. Dufty, J. J. Brey, and A. Santos, Physica A 240:212 (1997).

    Google Scholar 

  8. J. J. Brey, J. W. Dufty, C. S. Kim, and A. Santos, Phys. Rev. E 58:4638 (1998).

    Google Scholar 

  9. H. van Beijeren and M. H. Ernst, J. Stat. Phys. 21:125 (1979).

    Google Scholar 

  10. J. W. Dufty, A. Santos, and J. J. Brey, Phys. Rev. Lett. 77:1270 (1996).

    Google Scholar 

  11. A. Santos, J. M. Montanero, J. W. Dufty, and J. J. Brey, Phys. Rev. E 57:1644 (1998).

    Google Scholar 

  12. R. F. Rodríguez, E. Salinas-Rodríguez, and J. W. Dufty, J. Stat. Phys. 32:279 (1983).

    Google Scholar 

  13. J. A. McLennan, Introduction to Nonequilibrium Statistical Mechanics (Prentice-Hall, New Jersey, 1989).

    Google Scholar 

  14. H. Risken, The Fokker-Planck Equation (Springer-Verlag, Berlin, 1984), Sec. 5.3.

    Google Scholar 

  15. P. Résibois and M. de Leener, Classical Kinetic Theory of Fluids (Wiley and Sons, New York, 1977), Appendix A.

    Google Scholar 

  16. A. Santos, J. Montanero, J. W. Dufty, and J. J. Brey, Phys. Rev. E 57, 1644 (1998).

    Google Scholar 

  17. L. Groome, J. W. Dufty, and M. J. Lindenfeld, Phys. Rev. A 19:304 (1979).

    Google Scholar 

  18. J. J. Brey, M. J. Ruiz-Montero, and D. Cubero, Phys. Rev. E 54:3664 (1996).

    Google Scholar 

  19. A. Santos and J. J. Brey, Physica A 174:355 (1991); V. Garzó and A. Santos, Physica A 213:426 (1995).

    Google Scholar 

  20. J. Gómez-Ordóñez, J. J. Brey, and A. Santos, Phys. Rev. A 41:810 (1990); J. M. Montanero, A. Santos, and V. Garzó, Phys. Fluids 8:1981 (1996).

    Google Scholar 

  21. J. J. Brey, M. J. Ruiz-Montero, and F. Moreno, Phys. Rev. E 55:2846 (1997).

    Google Scholar 

  22. J.J. Brey and D. Cubero, Phys. Rev. E 57:2019 (1998).

    Google Scholar 

  23. J. M. Montanero, V. Garzó, A. Santos, and J. J. Brey, J. Fluid Mech. 389:391 (1999).

    Google Scholar 

  24. I. Golhirsch and G. Zanetti, Phys. Rev. Lett. 70:1619 (1993); S. McNamara and W. R. Young, Phys. Rev. E 53:5089 (1996).

    Google Scholar 

  25. J. J. Brey, M. J. Ruiz-Montero, and F. Moreno, Phys. Fluids 10:2976 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brey, J.J., Dufty, J.W. & Santos, A. Kinetic Models for Granular Flow. Journal of Statistical Physics 97, 281–322 (1999). https://doi.org/10.1023/A:1004675320309

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004675320309

Navigation