Skip to main content
Log in

Long- and Short-Range Correlations in Genome Organization

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the size distribution of coding and non-coding regions in DNA sequences. For most organisms we observe that the size distribution P c(S) of the coding regions of size S shows short range distribution, whereas the size distribution of the non-coding regions follows a power-law decay P nc(S) ∼ S −1 − μ, with power exponents indicating clear long-range behavior. We argue, using the Generalized Central Limit Theorem, that the long-range distributions observed in the non-coding are related to the lower level clustering of purines and pyrimidines (1d islands) which follow similar long-range laws. We also address the question of clustering of coding segments in the two complementary strands of DNA. We observe a short-range clustering of coding regions in both strands, expressed by an exponential decay in the clustering size distribution. The decay exponent expresses the degree of short-range correlations and the deviation from random clustering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. K. Peng, S. V. Buldyrev, A. L. Goldberger, S. Havlin, F. Sciortino, M. Simons, and H. E. Stanley, Nature 356:168 (1992).

    Google Scholar 

  2. R. N. Mantegna, S. V. Buldyrev, A. L. Goldberger, S. Havlin, C.-K Peng, M. Simons, and H. E. Stanley, Phys. Rev. Lett. 73:3169 (1994); A. Czirók, R. N. Mantegna, S. Havlin, and H. E. Stanley, Phys. Rev. E 52:446 (1995); C. A. Chatzidimitriou-Dreismann, R. M. Streffer, and D. Larhammar, Nucleic Acid Research 24:1676 (1996); Y. Almirantis and S. Papageorgiou, Proceedings of the European Conference on Artificial Life, J.-L. Deneubourg, page 9, ed. (U.L.B, Brussels, 1993); W. Li and K. Kaneko, Europhys. Lett. 17:655 (1992).

    Google Scholar 

  3. A. Provata and Y. Almirantis, Physica A 247:482 (1997).

    Google Scholar 

  4. A. Provata, Physica A 264:570 (1999).

    Google Scholar 

  5. S. V. Buldyrev, A. L. Goldberger, C.-K. Peng, M. Simons, and H. E. Stanley, Phys. Rev. E 47:4514 (1993).

    Google Scholar 

  6. N. V. Dokholyan, V. Sergey, S. V. Buldyrev, S. Havlin, and H. E. Stanley, Phys. Rev. Lett. 79:5182 (1997).

    Google Scholar 

  7. A. A. Tsonis, J. B. Elsner, and P. A. Tsonis, J. Theor. Biol. 151:323 (1991).

    Google Scholar 

  8. H. Herzel and I. Grosse, Physica A 216:518 (1995).

    Google Scholar 

  9. O. Popov, D. M. Segal, and E. N. Trifonov, BioSystems 38:65 (1996); E. N. Trifonov, Bull. Math. Biol. 51:417 (1989).

    Google Scholar 

  10. B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson, Molecular Biology of the Cell (Garland Publishing, Inc., New York, 1994).

    Google Scholar 

  11. B. Lewin, Genes VI (Oxford University Press, Oxford, 1997).

    Google Scholar 

  12. Y. Almirantis and A. Provata, Bull. Math. Biol. 59:975 (1997).

    Google Scholar 

  13. Y. Almirantis, J. Theor. Biol. 196:297 (1999).

    Google Scholar 

  14. W. Feller, An Introduction to Probability Theory and Its Applications (Wiley, New York, 1966).

    Google Scholar 

  15. H. Takayasu, Fractals in the Physical Sciences (Manchester University Press, 1990).

  16. H. Takayasu, M. Takayasu, A. Provata, and G. Huber, J. Stat. Phys. 65:725 (1991); H. Takayasu, Phys. Rev. Lett. 63:2563 (1989).

    Google Scholar 

  17. S. Brenner, G. Elgar, R. Sandford, A. Macrae, B. Venkatesh, and S. Aparicio, Nature 366:265 (1993).

    Google Scholar 

  18. D. Stauffer, Introduction to Percolation Theory (Taylor and Francis, London, 1985).

    Google Scholar 

  19. P.-G. De Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, London, 1979).

    Google Scholar 

  20. G. Nicolis, Self-organization in non-equilibrium systems (Wiley, New York 1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Almirantis, Y., Provata, A. Long- and Short-Range Correlations in Genome Organization. Journal of Statistical Physics 97, 233–262 (1999). https://doi.org/10.1023/A:1004671119400

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004671119400

Navigation