Skip to main content
Log in

The Renormalization Group and Its Finite Lattice Approximations

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We investigate finite lattice approximations to the Wilson renormalization group in models of unconstrained spins. We discuss first the properties of the renormalization group transformation (RGT) that control the accuracy of this type of approximation and explain different methods and techniques to practically identify them. We also discuss how to determine the anomalous dimension of the field. We apply our considerations to a linear sigma model in two dimensions in the domain of attraction of the Ising fixed point using a Bell–Wilson RGT. We are able to identify optimal RGTs which allow accurate computations of quantities such as critical exponents, fixed-point couplings and eigenvectors with modest statistics. We finally discuss the advantages and limitations of this type of approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. K. G. Wilson and J. Kogut, Phys. Rep. 12:75 (1974).

    Google Scholar 

  2. R. H. Swendsen, Phys. Rev. Lett. 42:829 (1979).

    Google Scholar 

  3. A. Gonzalez-Arroyo and M. Okawa, Phys. Rev. D 35:672 (1987).

    Google Scholar 

  4. T. L. Bell and K. G. Wilson, Phys. Rev. B 11:3431 (1975).

    Google Scholar 

  5. P. Hasenfratz and F. Niedermayer, Nucl. Phys. B 414:785 (1994).

    Google Scholar 

  6. A. Travesset, Ph.D. thesis, Universitat de Barcelona (1997), unpublished.

  7. R. H. Swendsen, Phys. Rev. Lett. 52:2321 (1984).

    Google Scholar 

  8. A. Hasenfratz et al., Phys. Lett. B 140:76 (1984).

    Google Scholar 

  9. H. Shenker and J. Tobochnik, Phys. Rev. B 22:4462 (1980); J. Hirsch and H. Shenker, Phys. Rev. B 27:1736 (1983).

    Google Scholar 

  10. F. Wegner, in Phase Transitions and Critical Phenomena, C. Domb and M. S. Green, eds. (1987), Vol. 6, p. 7.

  11. A. Travesset, Nucl. Phys. B 63A-C (Proc. Suppl.):640 (1998).

    Google Scholar 

  12. G. Murthy and R. Shankar, Phys. Rev. B 32:5851 (1985).

    Google Scholar 

  13. A. Gocksch and U. M. Heller, Nucl. Phys. B 275:219 (1986).

    Google Scholar 

  14. R. Brower and P. Tamayo, Phys. Rev. Lett. 62:1087 (1989).

    Google Scholar 

  15. U. Wolff, Phys. Rev. Lett. 62:361 (1989).

    Google Scholar 

  16. D. Espriu and A. Travesset, Phys. Lett. B 356:329 (1995).

    Google Scholar 

  17. G. S. Pawley et al., Phys Rev. B 29:4030 (1984).

    Google Scholar 

  18. C. Baillie et al., Phys. Rev. B 45:10438 (1992).

    Google Scholar 

  19. R. Gupta and P. Tamayo, cond-mat 9601048.

  20. R. Guidaa and J. Zinn-Justin, cond-mat 9803240.

  21. Baker and J. M. Kincaid, J. Stat. Phys. 24:469 (1981).

    Google Scholar 

  22. D. S. Gaunt and A. J. Guttmann, in Phase Transitions and Critical Phenomena, C. Domb and M. S. Green, eds. (1974), Vol. 3.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cacciuto, A., Gregory, E. & Travesset, A. The Renormalization Group and Its Finite Lattice Approximations. Journal of Statistical Physics 97, 541–574 (1999). https://doi.org/10.1023/A:1004659124079

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004659124079

Navigation