Skip to main content
Log in

Spouge's Conjecture on Complete and Instantaneous Gelation

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We investigate the stochastic counterpart of the Smoluchowski coagulation equation, namely the Marcus–Lushnikov coagulation model. It is believed that for a broad class of kernels, all particles are swept into one huge cluster in an arbitrarily small time, which is known as a complete and instantaneous gelation phenomenon. Indeed, Spouge (also Domilovskii et al. for a special case) conjectured that K(ij)=(ij)α, α>1, are such kernels. In this paper, we extend the above conjecture and prove rigorously that if there is a function ψ(ij), increasing in both i and j such that ∑ j=1 1/((ij))<∞ for all i, and K(ij)≥ijψ(ij) for all ij, then complete and instantaneous gelation occurs. Evidently, this implies that any kernels K(ij)≥ij(log(i+1)log(j+1))α, α>1, exhibit complete instantaneous gelation. Also, we conjuncture the existence of a critical (or metastable) sol state: if lim i+j→∞ ij/K(ij)=0 and ∑ ij=1 1/K(ij)=∞, then gelation time T g satisfies 0<T g<∞. Moreover, the gelation is complete after T g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

REFERENCES

  1. D. J. Aldous, Deterministic and stochastic models for coalescence (aggregation, coagulation): A review of the mean-field theory for probabilists, to appear in Bernoulli.

  2. D. J. Aldous, Emergence of the giant component in special Marcus-Lushnikov process, Random Structures and Algorithms 12:179-196 (1998).

    Google Scholar 

  3. V. Alexiades and A. D. Solomon, Mathematical Modeling of Melting and Freezing Processes (Hemisphere Publishing Corporation, Washington, 1993).

    Google Scholar 

  4. T. A. Bak and O. J. Heilmann, Post-gelation solutions to Smoluchowski's coagulation equation, J. Phys. A: Math. Gen. 27:4203-4209 (1994).

    Google Scholar 

  5. J. M. Ball, J. Carr, and O. Penrose, The Becker-Döring cluster equations: Basic properties and asymptotic behavior of Solutions, Commun. Math. Phys. 104:657-692 (1986).

    Google Scholar 

  6. Bollobás, Random Graphs (Academic Press, London, 1985).

    Google Scholar 

  7. E. Buffet and I. V. Pule, On the Lushnikov's model of gelation, J. Stat. Phys. 58:1041-1058 (1990).

    Google Scholar 

  8. J. Carr and F. P. da Costa, Instantaneous gelation in coagulation dynamics, Z. Angew. Math. Phys. 43:974-983 (1992).

    Google Scholar 

  9. P. G. Debenedetti, Metastable Liquids (Princeton University Press, Princeton, 1996).

    Google Scholar 

  10. E. R. Domilovskii, A. A. Lushnikov, and V. N. Piskunov, Monte Carlo simulation of coagulation process, Dokl. Phys. Chem. 240:108-110 (1978).

    Google Scholar 

  11. P. Erdös and A. Rényi, On the evolution of random graphs, Magy. Tud. Akad. Mat. Kut. Intéz. Közl. 5:17-61 (1960).

    Google Scholar 

  12. S. N. Ethier and T. G. Kurtz, Markov Processes: Characterization and Convergence (Wiley & Sons, New York, 1986).

    Google Scholar 

  13. S. Gueron and S. A. Levin, The dynamics of group formation, Math. Biosc. 128:243-264 (1995).

    Google Scholar 

  14. O. J. Heilmann, Analytic solutions of Smoluchowski's coagulation equation, J. Phys. A: Math. Gen. 25:3763-3771 (1992).

    Google Scholar 

  15. E. Hendricks, M. Ernst, and R. Ziff, Coagulation equations with gelation, J. Stat. Phys. 31:519-563 (1983).

    Google Scholar 

  16. S. Janson, D. E. Knuth, T. Luczak, and B. Pittel, The birth of giant component, Random Structures and Algorithms 4:233-358 (1993).

    Google Scholar 

  17. I. Jeon, Gelation phenomena, Ph.D thesis (Ohio State University, 1996).

  18. I. Jeon, Existence of gelling solutions for coagulation fragmentation equations, Commun. Math. Phys. 194:541-567 (1998).

    Google Scholar 

  19. F. Leyvraz, Existence and properties of post-gel solutions for the kinetic equations of coagulation, J. Phys. A: Math. Gen. 16:2861-2873 (1983).

    Google Scholar 

  20. F. Leyvraz and H. Tschudi, Critical kinetics near gelation, J. Phys. A: Math. Gen. 15:1951-1964 (1982).

    Google Scholar 

  21. T. Lindvall, Lectures on the Coupling Method (Wiley, New York, 1992).

    Google Scholar 

  22. A. A. Lushnikov, Certain now aspects of the coagulation theory, Izv. Atm. Ok. Fiz. 14:738-743 (1978).

    Google Scholar 

  23. P. March, Private communication.

  24. A. H. Marcus, Stochastic coalescence, Technometrics 10:133-146.

  25. J. B. McLeod, On an infinite set of non-linear differential equations I, II, Quart. J. Math. Oxford (2) 13:119-128, 193-205 (1962).

    Google Scholar 

  26. J. Norris, Smoluchowski's coagulation equation: Uniqueness, non-uniqueness and a hydrodynamic limit for the stochastic coalescent, Ann. Appl. Probab., to appear.

  27. B. Pittel, On tree census and the giant component in sparse random graphs, Random Structure and Algorithms 1:311-342 (1990).

    Google Scholar 

  28. J. L. Spouge, Monte Carlo results for random coagulation, J. Coll. Interface Sci. 107:38-43 (1985).

    Google Scholar 

  29. P. G. J. van Dongen, On the possible occurrence of instantaneous gelation in Smoluchowski's coagulation equation, J. Phys. A: Math. Gen. 20:1889-1904 (1987).

    Google Scholar 

  30. P. G. J. van Dongen and M. H. Ernst, Pre-and post-gel size distributions in (ir)reversible polymerization, J. Phys. A: Math. Gen. 16:L327-L332 (1983).

    Google Scholar 

  31. P. G. J. van Dongen and M. H. Ernst, Cluster size distribution on irreversible aggregation at large times, J. Phys. A: Math. Gen. 18:2779-2793 (1985).

    Google Scholar 

  32. R. D. Vigil, R. M. Ziff, and B. Lu, New universality class for gelation in a system with particle breakup, Phys. Rev. B 38:942-945 (1988).

    Google Scholar 

  33. W. H. White, A global existence theorem for Smoluchowski's coagulation equation, Proc. Am. Math. Soc. 80:273-276 (1980).

    Google Scholar 

  34. R. Ziff, Kinetics of polymerization, J. Stat. Phys. 23:241-263 (1980).

    Google Scholar 

  35. R. Ziff and G. Stell, Kinetics of polymer gelation, J. Chem. Phys. 73:3492-3499 (1980).

    Google Scholar 

  36. R. Ziff, E. Hendricks, and M. Ernst, Critical properties for gelation: A kinetic approach, Phys. Rev. Lett. 49:593-595 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeon, I. Spouge's Conjecture on Complete and Instantaneous Gelation. Journal of Statistical Physics 96, 1049–1070 (1999). https://doi.org/10.1023/A:1004640317274

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004640317274

Navigation