Skip to main content
Log in

Renewal Sequences and Intermittency

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this paper we examine the generating function Φ(z) of a renewal sequence arising from the distribution of return times in the “turbulent” region for a class of piecewise affine interval maps introduced by Gaspard and Wang and studied by several authors. We prove that it admits a meromorphic continuation to the entire complex z-plane with a branch cut along the ray (1, +∞). Moreover, we compute the asymptotic behavior of the coefficients of its Taylor expansion at z=0. From this, we obtain the exact polynomial asympotics for the rate of mixing when the invariant measure is finite and of the scaling rate when it is infinite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. Gaspard and X.-J. Wang, Sporadicity: between periodic and chaotic dynamical behaviors, Proc. Nat. Acad. Sci. USA 85:4591–4595 (1988).

    Google Scholar 

  2. X.-J. Wang, Statistical physics of temporal intermittency, Phys. Rev. A 40:6647 (1989).

    Google Scholar 

  3. P. Collet, A. Galves, and B. Schmitt, Unpredictability of the occurence time of a long laminar period in a model of temporal intermittency, Ann. Inst. Poincaré 57:319–331 (1992).

    Google Scholar 

  4. A. Lambert, S. Siboni, and S. Vaienti, Statistical properties of a non-uniformly hyperbolic map of the interval, J. Stat. Phys. 72:1305–1330 (1993).

    Google Scholar 

  5. M. Mori, On the intermittency of a piecewise linear map, Tokyo J. Math. 16:411–428 (1993).

    Google Scholar 

  6. T. Prellberg, Ph.D. thesis (Virginia Poly. Inst. and State Univ., 1991).

  7. T. Prellberg and J. Slawny, Maps of intervals with indifferent fixed points: thermodynamic formalism and phase transitions, J. Stat. Phys. 66:503–514 (1992).

    Google Scholar 

  8. A. O. Lopes, The zeta function, non-differentiability of the pressure and the critical exponent of transition, Adv. in Math. 101:133–165 (1993).

    Google Scholar 

  9. Y. Pomeau and P. Manneville, Intermittent transition to turbulence in dissipative dynamical systems, Comm. Math. Phys. 74:189–197 (1980).

    Google Scholar 

  10. J. Aaronson, The asymptotic distributional behaviour of transformations preserving infinite measures, J. d'Analyse Mathématique 39:203–234 (1981).

    Google Scholar 

  11. M. Campanino and S. Isola, Infinite invariant measures for non-uniformly expanding transformations of [0, 1]: weak law of large numbers with anomalous scaling, Forum Mathem. 8:71–92 (1996).

    Google Scholar 

  12. M. Thaler, Transformations on [0, 1] with infinite invariant measures, Israel J. Math. 46:67–96 (1983).

    Google Scholar 

  13. S. Isola, On the rate of convergence to equilibrium for countable ergodic Markov chains, 1997 preprint.

  14. S. Isola, Dynamical zeta functions and correlation functions for intermittent interval maps, 1997 preprint.

  15. C. Liverani, B. Saussol, and S. Vaienti, A probabilistic approach to intermittency, 1997 preprint.

  16. L.-S. Young, Recurrence times and rates of mixing, Israel J. Math. 110:153–188 (1999).

    Google Scholar 

  17. M. E. Fisher, The theory of condensation and the critical point, Physics 3:255–283 (1967).

    Google Scholar 

  18. G. Gallavotti, Funzioni zeta e insiemi basilari, Accad. Lincei Rend. Sc. fis. mat. e nat. 61:309–317 (1976).

    Google Scholar 

  19. F. Hofbauer, Examples for the non-uniqueness of the equilibrium states, Trans. AMS 228:133–141 (1977).

    Google Scholar 

  20. J. F. C. Kingman, Regenerative Phenomena (John Wiley, 1972).

  21. H. Hu and L.-S. Young, Nonexistence of SRB measures for some systems that are “almost Anosov,”' Erg. Th. Dyn. Syst. 15:67–76 (1995).

    Google Scholar 

  22. P. Erdoős, W. Feller, and H. Pollard, A property of power series with positive coefficients, Bull. AMS 55:201–204 (1949).

    Google Scholar 

  23. G.H. Hardy, Divergent Series (Oxford, 1949).

  24. W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 2 (Wiley, New York, 1970).

    Google Scholar 

  25. W. Feller, Fluctuation theory of recurrent events, TAMS 67:99–119 (1949).

    Google Scholar 

  26. P. Dienes, The Taylor Series (Dover, New York, 1957).

    Google Scholar 

  27. N. G. de Bruijn, Asymptotic Methods in Analysis (Dover, New York, 1981).

    Google Scholar 

  28. B. Hu and J. Rudnick, Exact solutions to the Feigenbaum renormalization-group equations for intermittency, Phys. Rev. Lett. 48:1645–1648 (1982).

    Google Scholar 

  29. M. A. Evgrafov, Analytic Functions (Dover, New York, 1966).

    Google Scholar 

  30. D. Ruelle, Thermodynamic Formalism (Addison-Wesley, 1978).

  31. P. Dahlqvist, Do zeta functions for intermittent maps have branch points?, 1997 preprint.

  32. H. H. Rugh, Intermittency and Regularized Fredholm Determinants, Invent. Math. 135:1–24 (1999).

    Google Scholar 

  33. K. L. Chung, Markov Chains with Stationary Transition Probabilities (Springer, 1967).

  34. J. Aaronson, An Introduction to Infinite Ergodic Theory (AMS, 1997).

  35. B. A. Sevast'yanov, Renewal theory, J. Soviet Math. 4(3) (1975).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isola, S. Renewal Sequences and Intermittency. Journal of Statistical Physics 97, 263–280 (1999). https://doi.org/10.1023/A:1004623303471

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004623303471

Navigation