Skip to main content
Log in

Poissonian Obstacles with Gaussian Walls Discriminate Between Classical and Quantum Lifshits Tailing in Magnetic Fields

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We investigate the leading low-energy falloff of the integrated density of states of a charged quantum particle in the Euclidean plane subject to a perpendicular constant magnetic field and repulsive impurities randomly distributed according to Poisson's law. This so-called magnetic Lifshits tail was determined by K. Broderix et al. [J. Stat. Phys. 80:1 (1995)] for algebraically decaying and by L. Erdős [Probab. Theory Relat. Fields 112:321 (1998)] for compactly supported single-impurity potentials. While the result in the first case coincides with the corresponding classical one, the Lifshits tail in Erdős' case exhibits a genuine quantum behavior. Building on both works, we determine magnetic Lifshits tails for a wide class of positive impurity potentials with a leading long-distance decay in between these limiting cases. Gaussian decay may be shown to discriminate between classical and quantum behavior. The Lifshits tail caused by Gaussian decay reveals power-law falloff with an exponent not yet completely determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. Brézin, D. J. Gross, and C. Itzykson, Density of states in the presence of a strong magnetic field and random impurities, Nucl. Phys. B 235:24–44 (1984).

    Google Scholar 

  2. K. Broderix, D. Hundertmark, W. Kirsch, and H. Leschke, The fate of Lifshits tails in magnetic fields, J. Stat. Phys. 80:1–22 (1995).

    Google Scholar 

  3. K. Broderix, D. Hundertmark, and H. Leschke, Continuity properties of Schrödinger semigroups with magnetic fields, e-print 1998, math-ph/9808004, to appear in Rev. Math. Phys.

  4. R. Carmona and J. Lacroix, Spectral Theory of Random Schrödinger Operators (Birkhäuser, Boston, 1990).

    Google Scholar 

  5. H. L. Cycon, R. G. Froese, W. Kirsch, and B. Simon, Schrödinger Operators (Springer, Berlin, 1987).

    Google Scholar 

  6. T. C. Dorlas, N. Macris, and J. V. Pulé, Characterization of the spectrum of the Landau Hamiltonian with delta impurities, Commun. Math. Phys. 204:367–396 (1999).

    Google Scholar 

  7. L. Erdős, Lifschitz tail in a magnetic field: The nonclassical regime, Probab. Theory Relat. Fields 112:321–371 (1998).

    Google Scholar 

  8. V. Fock, Bemerkung zur Quantelung des harmonischen Oszillators im Magnetfeld, Z. Physik 47:446–448 (1928).

    Google Scholar 

  9. Th. Hupfer, H. Leschke, and S. Warzel, The multiformity of Lifshits tails caused by ran-dom Landau Hamiltonians with repulsive impurity potentials of different decay at infinity, e-print 1999, math-ph/9910034, to appear in the Proceedings of the International Conference on Partial Differential Equations and Mathematical Physics, Birmingham, Alabama, March 15-19, 1999. Editors: R. Weikard and G. Weinstein, International Press.

  10. W. Kirsch, Random Schrödinger operators: A course, in Schrödinger Operators, H. Holden and A. Jensen, eds., Lecture Notes in Physics, Vol. 345 (Springer, Berlin, 1989), pp. 264–370.

    Google Scholar 

  11. F. Klopp and L. Pastur, Lifshitz tails for random Schödinger operators with negative singular Poisson potential, Commun. Math. Phys. 206:57–103 (1999).

    Google Scholar 

  12. A. Kristoffersen and K. Olaussen, The averaged Green function and density of states for electrons in a high magnetic field and random potential, J. Phys.: Condens. Matter 9:10801–10827 (1997).

    Google Scholar 

  13. L. Landau, Diamagnetismus der Metalle, Z. Physik 64:629–637 (1930).

    Google Scholar 

  14. I. M. Lifshits, S. A. Gredeskul, and L. A. Pastur, Introduction to the Theory of Disordered Systems (Wiley, New York, 1988). Russian original: Nauka, Moscow, 1982.

    Google Scholar 

  15. H. Matsumoto, On the integrated density of states for the Schrödinger operators with certain random electromagnetic potentials, J. Math. Soc. Japan 45:197–214 (1993).

    Google Scholar 

  16. D. C. Mattis, The Theory of Magnetism I, corr. 2nd printing (Springer, Berlin, 1988).

    Google Scholar 

  17. L. Pastur and A. Figotin, Spectra of Random and Almost-Periodic Operators (Springer, Berlin, 1992).

    Google Scholar 

  18. J. V. Pulé and M. Scrowston, Infinite degeneracy for a Landau Hamiltonian with Poisson impurities, J. Math. Phys. 38:6304–6314 (1997).

    Google Scholar 

  19. M. Scrowston, The spectrum of a magnetic Schödinger operator with randomly located delta impurities, e-print 1999, math-ph/9904031.

  20. A.-S. Sznitman, Brownian Motion, Obstacles and Random Media (Springer, Berlin, 1998).

    Google Scholar 

  21. N. Ueki, On spectra of random Schrödinger operators with magnetic fields, Osaka J. Math. 31:177–187 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hupfer, T., Leschke, H. & Warzel, S. Poissonian Obstacles with Gaussian Walls Discriminate Between Classical and Quantum Lifshits Tailing in Magnetic Fields. Journal of Statistical Physics 97, 725–750 (1999). https://doi.org/10.1023/A:1004619409967

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004619409967

Navigation