Skip to main content
Log in

A Comparison Between Information-Theoretic and Phenomenological Descriptions of Nonequilibrium Radiation

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We present two approaches to the description of nonequilibrium radiation. The first approach is based on information statistical theory, whereas the second one is based on the hypothesis of radiative local thermodynamic equilibrium (RLTE). Both methods are applied to describe the radiation inside an infinite medium where a uniform temperature gradient has been established. The absorption coefficient is allowed to be frequency dependent. It is found that both approaches cannot be consistent beyond the first-order approximation. We argue that this shows the limitations of existing models of radiative transfer based on information theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. Callen, Thermodynamics and an Introduction to Thermostatistics (Wiley, New York, 1960).

    Google Scholar 

  2. L. D. Landau and E. M. Lifshitz, Statistical Physics. Part 1 (Pergamon, Oxford, 1980).

    Google Scholar 

  3. S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases (Cambridge University Press, Cambridge, 1970).

    Google Scholar 

  4. I. Prigogine, Étude Thermodynamique des Phénoménes Irréversibles (Dunod, Paris, 1947).

    Google Scholar 

  5. S. R. De Groot and P. Mazur, Non-Equilibrium Thermodynamics (Dover, New York, 1984).

    Google Scholar 

  6. M. N. Kogan, On the principle of maximum entropy, in Rarified Gas Dynamics, C. L. Brundin, ed. (Academic Press, New York, 1967).

    Google Scholar 

  7. D. Jou, J. Casas-Vázquez and G. Lebon, Extended Irreversible Thermodynamics, 2nd edition (Springer, Berlin, 1996), specially Section 5.4.

    Google Scholar 

  8. L. C. Woods, An Introduction to the Kinetic Theory of Gases and Magnetoplasmas (Oxford University Press, Oxford, 1984).

    Google Scholar 

  9. E. T. Jaynes, Phys. Rev. 106:620 (1957); 108:171 (1957).

    Google Scholar 

  10. Reference 7, Section 3.3

  11. H. Grad, Principles of the kinetic theory of gases, in Handbuch der Physik XII, S. Flugge, ed. (Springer, Berlin, 1958).

    Google Scholar 

  12. See, e.g., N. Piskunov, Differential and Integral Calculus (Mir, Moscow, 1977), Section VIII.18.

    Google Scholar 

  13. C. N. Minerbo, J. Quant. Spectrosc. Radiat. Transfer 20:541 (1978).

    Google Scholar 

  14. R. Domínguez and D. Jou, Phys. Rev. E 51:158 (1995).

    Google Scholar 

  15. J. Fort, Physica A 243:275 (1997).

    Google Scholar 

  16. M. Planck, The Theory of Heat Radiation (Dover, New York, 1959).

    Google Scholar 

  17. G. C. Pomraning, The Equations of Radiation Hydrodynamics (Pergamon, Oxford, 1973).

    Google Scholar 

  18. S. Chandrasekhar, An Introduction to the Theory of Stellar Structure (Dover, New York, 1967).

    Google Scholar 

  19. J. Oxenius, Kinetic Theory of Particles and Photons (Springer, Berlin, 1986), p. 67.

    Google Scholar 

  20. S. Chandrasekhar, Radiative Transfer, Chapter I (Dover, New York, 1960).

    Google Scholar 

  21. D. Mihalas and B. W. Mihalas, Foundations of Radiation Hydrodynamics (Oxford University Press, Oxford, 1984).

    Google Scholar 

  22. See, e.g., M. J. Berger and J. Hubbell, in CRC Handbooks of Chemistry and Physics, D. R. Lide, ed. (CRC Press, Boca Raton, 1995), p. 10–284.

    Google Scholar 

  23. R. Domínguez-Cascante and J. Faraudo, Phys. Rev. E 54:6933 (1996).

    Google Scholar 

  24. R. Domínguez-Cascante, J. Phys. A 30:7707 (1997).

    Google Scholar 

  25. J. Fort, Phys. Rev. E 59:3710 (1999).

    Google Scholar 

  26. H. Struchtrup, Ann. Phys. (N.Y.) 257:111 (1997).

    Google Scholar 

  27. H. Struchtrup, Ann. Phys. (N.Y.) 266:1 (1998).

    Google Scholar 

  28. B. C. Eu and K. Mao, Physica A 180:65 (1992).

    Google Scholar 

  29. A. Sommerfeld, Thermodynamics and Statistical Mechanics (Academic Press, San Diego, 1995).

    Google Scholar 

  30. J. Fort, D. Jou, and J. E. Llebot, Physica A 248:97 (1998).

    Google Scholar 

  31. I. Müller and T. Ruggeri, Rational Extended Thermodynamics (Springer-Verlag, New York, 1998).

    Google Scholar 

  32. L. Kondic, J. I. Gersten, and C. Yuan, Phys. Rev. E 52:4976 (1995).

    Google Scholar 

  33. J. V. Nicholas and D. R. White, Traceable Temperatures (Wiley, Chichester, 1994), Chapter 8.

    Google Scholar 

  34. A. G. Gaydon and I. R. Hurle, The Shock Tube in High-Temperature Chemical Physics (Chapman and Hall, London, 1963).

    Google Scholar 

  35. T. A. Hall et al., Phys. Rev. E 55:R6356.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fort, J., Roura, P. A Comparison Between Information-Theoretic and Phenomenological Descriptions of Nonequilibrium Radiation. Journal of Statistical Physics 97, 941–955 (1999). https://doi.org/10.1023/A:1004610029956

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004610029956

Navigation