Skip to main content
Log in

The Response of Glassy Systems to Random Perturbations: A Bridge Between Equilibrium and Off-Equilibrium

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We discuss the response of aging systems with short-range interactions to a class of random perturbations. Although these systems are out of equilibrium, the limit value of the free energy at long times is equal to the equilibrium free energy. By exploiting this fact, we define a new order parameter function, and we relate it to the ratio between response and fluctuation, which is in principle measurable in an aging experiment. For a class of systems possessing stochastic stability, we show that this new order parameter function is intimately related to the static order parameter function, describing the distribution of overlaps between clustering states. The same method is applied to investigate the geometrical organization of pure states. We show that the ultrametric organization in the dynamics implies static ultrametricity, and we relate these properties to static separability, i.e., the property that the measure of the overlap between pure states is essentially unique. Our results, especially relevant for spin glasses, pave the way to an experimental determination of the order parameter function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. K. Binder and A. P. Young, Rev. Mod. Phys. 58:801 (1986).

    Google Scholar 

  2. M. Mézard, G. Parisi, and M. A. Virasoro, Spin Glass Theory and Beyond (World Scientific, Singapore, 1987).

    Google Scholar 

  3. K. H. Fischer and J. A. Hertz, Spin Glasses (Cambridge U. P., Cambridge, 1991).

    Google Scholar 

  4. A. P. Young (ed.), Spin Glasses and Random Fields (World Scientific, Singapore, 1997).

    Google Scholar 

  5. M. Mézard and G. Parisi, Phys. Rev. Lett. 82:747 (1999), and cond-mat/9812180.

    Google Scholar 

  6. For a recent review see E. Marinari, G. Parisi, and J. J. Ruiz-Lorenzo in ref. 4.

    Google Scholar 

  7. C. M.Z Newman and D. L. Stein, Phys. Rev. B 46:973 (1992).

    Google Scholar 

  8. G. Parisi, Phys. Rev. Lett. 50:1946 (1983).

    Google Scholar 

  9. L. C. E. Struik, Physical Aging in Amorphous Polymers and Other Materials (Elsevier, Houston, 1978).

    Google Scholar 

  10. L. Lundgren, P. Svedlindh, P. Nordblad, and O. Beckman, Phys. Rev. Lett. 51:911 (1983); P. Nordblad, P. Svedlindh, L. Lundgren, and L. Sandlund, Phys. Rev. B 33:645 (1986); M. Alba, J. Hamman, M. Ocio, and Ph. Refrigier, J. Appl. Phys. 61:3683 (1987); F. Lefloch, J. Hamman, M. Ocio, and E. Vincent, Europhys. Lett. 18:647 (1992). For a recent review see P. Norblad and P. Svendlindh in ref. 4.

    Google Scholar 

  11. L. F. Cugliandolo, J. Kurchan, P. Le Doussal, and L. Peliti, Phys. Rev. Lett. 78:3504 (1997).

    Google Scholar 

  12. L. Cugliandolo, J. Kurchan, and L. Peliti, Phys. Rev. E 55:3898 (1997).

    Google Scholar 

  13. S. Franz, M. Mézard, G. Parisi, and L. Peliti, Phys. Rev. Lett. 81:1758 (1998).

    Google Scholar 

  14. For a recent review see J.-P. Bouchaud, L. Cugliandolo, M. Mézard, and J. Kurchan in ref. 4.

    Google Scholar 

  15. J.-P. Bouchaud, J. Physique (Paris) 2:1705 (1992).

    Google Scholar 

  16. S. Franz and H. Rieger, J. Stat. Phys. 79:749 (1995); G. Parisi, Phys. Rev. Lett. 79:3660 (1997); J. Phys. A. Math. Gen. 30:8523 (1997); E. Marinari, G. Parisi, F. Ricci-Tersenghi, and J. J. Ruiz-Loretzo, J. Phys. A: Math. Gen. 31:2611 (1998); G. Parisi, F. Ricci-Tersenghi, and J. J. Ruiz-Lorenzo, Phys. Rev. B 57:13617 (1998); A. Barrat, Phys. Rev. E 57:3629 (1998); M. Campellone, B. Coluzzi, and G. Parisi, cond-mat/9804291, J. Phys. A, to appear.

    Google Scholar 

  17. D. Fisher, Physica D 107:204 (1997).

    Google Scholar 

  18. C. M. Newman and D. L. Stein, Phys. Rev. Lett. 76:515 (1996).

    Google Scholar 

  19. F. Guerra, Int. J. Mod. Phys. B 10:1675 (1997).

    Google Scholar 

  20. M. Aizenman and P. Contucci, J. Stat. Phys. 92:765 (1998).

    Google Scholar 

  21. L. F. Cugliandolo and J. Kurchan, Phys. Rev. Lett. 71:173 (1993).

    Google Scholar 

  22. S. Ghirlanda and F. Guerra, J. Phys. A: Math. Gen. 31:9149 (1998).

    Google Scholar 

  23. E. Marinari, G. Parisi, F. Ricci-Tersenghi, and J. J. Ruiz-Lorenzo, J. Phys. A: Math. Gen. 31:2611 (1998).

    Google Scholar 

  24. D. J. Gross and M. Mézard, Nucl. Phys. B 240:431 (1984).

    Google Scholar 

  25. M. Mézard, G. Parisi, and M. A. Virasoro, J. Physique Lett. 46:L21 (1985).

    Google Scholar 

  26. G. Parisi, On the probabilistic formulation of the replica approach to spin glasses, condmat/9801081.

  27. L. F. Cugliandolo and J. Kurchan, J. Phys. A: Math. Gen. 27:5749 (1994).

    Google Scholar 

  28. S. Franz and M. Mézard, Europhys. Lett. 26:209 (1994); Physica A 210:48 (1994).

    Google Scholar 

  29. M. Mézard, G. Parisi, N. Sourlas, G. Toulouse, and M. A. Virasoro, J. Physique 45:843 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franz, S., Mézard, M., Parisi, G. et al. The Response of Glassy Systems to Random Perturbations: A Bridge Between Equilibrium and Off-Equilibrium. Journal of Statistical Physics 97, 459–488 (1999). https://doi.org/10.1023/A:1004602906332

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004602906332

Navigation