Skip to main content
Log in

Coulomb Systems at Low Density: A Review

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Results on the correlations of low-density classical and quantum Coulomb systems at equilibrium in three dimensions are reviewed. The exponential decay of particle correlations in the classical Coulomb system, Debye–Hückel screening, is compared and contrasted with the quantum case, where strong arguments are presented for the absence of exponential screening. Results and techniques for detailed calculations that determine the asymptotic decay of correlations for quantum systems are discussed. Theorems on the existence of molecules in the Saha regime are reviewed. Finally, new combinatoric formulas for the coefficients of Mayer expansions are presented and their role in proofs of results on Debye–Hückel screening is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • A. Abdesselam and V. Rivasseau, Trees, forests and jungles: A botanical garden for cluster expansions, in Constructive Physics, V. Rivasseau, ed. (Springer, Berlin, Heidelberg, New York, 1995), pp. 7-36.

    Google Scholar 

  • A. Alastuey, Solvable models of Coulomb systems in two dimensions, in Strongly Coupled Plasma, F. J. Rogers and H. E. Dewitt, eds., NATO Advanced Science Institutes Series B 154 (Plenum Press, New York, 1987), pp. 331-347.

    Google Scholar 

  • A. Alastuey, Statistical mechanics of quantum plasmas. Path integral formalism, in The Equation of State in Astrophysics, G. Chabrier and E. Schatzman, eds, IAU Colloquium 147 (Cambridge University Press, 1994), pp. 43-77.

  • A. Alastuey and F. Cornu, Correlations in the Kosterlitz-Thouless phase of the two-dimensional Coulomb gas, J. Stat. Phys. 66:165-231 (1992).

    Google Scholar 

  • A. Alastuey and F. Cornu, The 2D classical Coulomb gas near the zero-density Kosterlitz-Thouless critical point: correlations and critical line, J. Stat. Phys. 89:6-19 (1997a).

    Google Scholar 

  • A. Alastuey and P. Cornu, Algebraic tails in three-dimensional quantum plasmas, J. Stat. Phys. 89:20-35 (1997b).

    Google Scholar 

  • A. Alastuey and F. Cornu, Critical line near the zero-density critical point of the Kosterlitz-Thouless transition, J. Stat. Phys. 87:891-895 (1997c).

    Google Scholar 

  • A. Alastuey and P. A. Martin, Decay of correlations in classical fluids with long-range forces, J. Stat. Phys. 39:405-426 (1985).

    Google Scholar 

  • A. Alastuey and P. A. Martin, Absence of exponential clustering for static quantum correlations and time-displaced correlations in charged fluids, Eur. Phys. Lett. 6:385-390 (1988).

    Google Scholar 

  • A. Alastuey and P. A. Martin, Absence of exponential clustering in quantum Coulomb fluids, Phys. Rev. A 40:6485-6520 (1989).

    Google Scholar 

  • A. Alastuey and A. Perez, Virial expansion of the equation of state of a quantum plasma, Eur. Phys. Lett. 20:19-24 (1992).

    Google Scholar 

  • A. Alastuey and A. Perez, Virial expansion for quantum plasmas: Fermi-Bose statistics, Phys. Rev. E 53:5714-5728 (1996).

    Google Scholar 

  • A. Alastuey, F. Cornu, and P. A. Martin, Algebraic screening and van der Waals forces in partially ionized gases, in Strongly Coupled Coulomb Systems, G. Kalman, K. Blagoev, and J. J. M. Rommel, eds. (Plenum, 1998), pp. 705-708.

  • A. Alastuey, F. Cornu, and A. Perez, Virial expansion for quantum plasmas: Diagrammatic resummations, Phys. Rev. E 49:1077-1093 (1994).

    Google Scholar 

  • A. Alastuey, F. Cornu, and A. Perez, Virial expansion for quantum plasmas: Maxwell-Boltzmann statistics, Phys. Rev. E 51:1725-1744 (1995).

    Google Scholar 

  • G. Battle and P. Federbush, A note on cluster expansions, tree graph identities, extra 1/N! factors!!!, Lett. Math. Phys. 8:55-57 (1984).

    Google Scholar 

  • S. Bekiranov and M. E. Fisher, Fluctuations in electrolytes: The Lebowitz and other correlation lengths, Phys. Rev. Lett. 81:5836-5839 (1998).

    Google Scholar 

  • S. Bekiranov and M. E. Fisher, Diverging correlation lengths in electrolytes: exact results at low densities, Phys. Rev. E 59:492-511 (1999).

    Google Scholar 

  • G. Benfatto, An iterated Mayer expansion for the Yukawa gas, J. Stat. Phys. 41:671-684 (1985).

    Google Scholar 

  • H. J. Brascamp and E. H. Lieb, Some inequalities for Gaussian measures and the long range order of the one dimensional plasma, in Functional Integration and Its Applications, A. Arthurs, ed. (Clarendon, Oxford, 1975), pp. 1-14.

    Google Scholar 

  • H. J. Brascamp and E. H. Lieb, On extensions of the Brun-Minkowski and Prekopka-Leinler theorems, J. Funct. Anal. 22:366-389 (1976).

    Google Scholar 

  • I. Brevik and J. Høye, Van der Waals force derived from a quantum statistical mechanical path integral method, Physica A 153:420-440 (1988).

    Google Scholar 

  • D. Brydges and P. A. Martin, Sum rules for Coulomb systems with hard cores, in Mathematical Results in Statistical Mecllanics, S. Miracle-Sole, J. Ruiz and V. Zagrebnov, eds. (World Scientific, 1999), pp. 323-329.

  • D. C. Brydges, A rigorous approach to Debye screening in dilute classical Coulomb systems, Commun. Math. Phys. 58:313-350 (1978).

    Google Scholar 

  • D. C. Brydges, A short course on cluster expansions, in Critical Phenomena, Random Systems, Gauge Theories, K. Osterwalder and R. Stora, eds., Les Houches Summer School (North Holland, Amsterdam, New York, 1984), pp. 131-183.

    Google Scholar 

  • D. C. Brydges, Functional integrals and their applications, Lecture notes with collaboration of Roberto Fernandez. Course in the “Troisième Cycle de la Physique en Suisse Romande”, May 1992. Manuscript 93-24, http://rene.ma.utexas.edu/mp_arc (1992).

  • D. C. Brydges and P. Federbush, The cluster expansion in statistical mechanics, Commun. Math. Phys. 49:233-246 (1976).

    Google Scholar 

  • D. C. Brydges and P. Federbush, The cluster expansion for potentials with exponential fall-off, Commun. Math. Phys. 53:19-30 (1977).

    Google Scholar 

  • D. C. Brydges and P. Federbush, A new form of the Mayer expansion in classical statistical mechanics, J. Math. Phys. 19:2064-2067 (1978).

    Google Scholar 

  • D. C. Brydges and P. Federbush, Debye screening, Commun. Math. Phys. 73:197-246 (1980).

    Google Scholar 

  • D. C. Brydges and P. Federbush, Debye screening in classical Coulomb systems, in Rigorous Atomic and Molecular Physics, G. Velo and A. Wightman, eds., Erice Summer School (Plenum Press, Oxford, 1981), pp. 371-439.

    Google Scholar 

  • D. C. Brydges and G. Keller, Absence of Debye screening in the quantum Coulomb system, J. Stat. Phys. 76:285-297 (1994a).

    Google Scholar 

  • D. C. Brydges and G. Keller, Correlation functions of general observables in dipole type systems I: Accurate upper bounds, Helv. Phys. Acta 67:43-116 (1994b).

    Google Scholar 

  • D. C. Brydges and T. Kennedy, Mayer expansions and the Hamilton-Jacobi equation, J. Stat. Phys. 48:19-49 (1987).

    Google Scholar 

  • D. C. Brydges and E. Seiler, Absence of screening in certain lattice gauge and plasma models, J. Stat. Phys. 42:405-424 (1986).

    Google Scholar 

  • D. C. Brydges and H. Yau, Grad φ perturbations of massless Gaussian fields, Commun. Math. Phys. 129:351-392 (1990).

    Google Scholar 

  • L. Bugliaro, J. Frøhlich, and G. M. Graf, Stability of quantum electrodynamics with non-relativistic matter, Phys. Rev. Lett. 77:3494-3497 (1996).

    Google Scholar 

  • P. Choquard, H. Kunz, P. A. Martin, and M. Navet, One dimensional Coulomb systems, in Physics in One Dimension, J. Bernasconi and T. Schneider, eds., Springer Series in Solid State Sciences No. 23 (Springer, Berlin, 1981), pp. 335-350.

    Google Scholar 

  • E. G. D. Cohen and T. J. Murphy, New results in the theory of the classical electron gas, Phys. Fluids 12:1404-1411 (1969).

    Google Scholar 

  • J. G. Conlon, E. H. Lieb and H. T. Yau, The Coulomb gas at low temperature and low density, Commun. Math. Phys. 125:153-180 (1989).

    Google Scholar 

  • F. Cornu, Correlations in quantum plasma. I. Resummations in Mayer like diagrammatics, Phys. Rev. E 53:4562-4594 (1996a).

    Google Scholar 

  • F. Cornu, Correlations in quantum plasmas. II. Algebraic tails, Phys. Rev. E 53:4595-4631 (1996b).

    Google Scholar 

  • F. Cornu, Exact algebraic tails of static correlations in quantum plasmas at low density, Phys. Rev. Lett. 78:1464-1467 (1997a).

    Google Scholar 

  • F. Cornu, Exact low density free energy and algebraic tails of static correlations in quantum plasmas in a uniform magnetic field, Europhys. Lett. 37:591-596 (1997b).

    Google Scholar 

  • F. Cornu, Quantum plasma with or without uniform magnetic field. I and III. General formalism and algebraic tails of correlations, Phys. Rev. E 58:5268-5292, 5322-5346 (1998a).

    Google Scholar 

  • F. Cornu, Quantum plasma with or without uniform magnetic field. II. Exact low-density free energy, Phys. Rev. E 58:5293-5321 (1998b).

    Google Scholar 

  • F. Cornu and P. A. Martin, Electron gas beyond the random phase approximation: algebraic screening, Phys. Rev. A 44:4893-4910 (1991).

    Google Scholar 

  • P. Debye and E. Hückel, Zur Theorie der Electrolyte, Phys. Z 9:185-206 (1923).

    Google Scholar 

  • C. Deutsch, Y. Furutani, and M. M. Gombert, Nodal expansions for strongly coupled plasmas, Phys. Rep. 69:85-193 (1981).

    Google Scholar 

  • C. Deutsch and M. Lavaud, Equilibrium properties of a two-dimensional Coulomb gas, Phys. Rev. A 9:2598-2616 (1974).

    Google Scholar 

  • H. E. DeWitt, Evaluation of the quantum mechanical ring sum with Boltzmann statistics, J. Math. Phys. 3:1216-1228 (1962).

    Google Scholar 

  • H. E. DeWitt, Statistical mechanics of high temperature quantum plasmas beyond the ring approximation, J. Math. Phys. 7:616-626 (1966).

    Google Scholar 

  • H. E. DeWitt, M. Schlanges, A. Y. Sakakura, and W. D. Kraeft, Low density expansion of the equation of state for a quantum electron gas, Phys. Lett. 197:326-329 (1995).

    Google Scholar 

  • J. Dimock, Bosonization of massive fermions, Commun. Math. Phys. 198:247-281 (1998).

    Google Scholar 

  • J. Dimock and T. Hurd, Construction of the two-dimensional Sine-Gordon model for β<8π, Commun. Math. Phys. 156:547-580 (1993).

    Google Scholar 

  • F. Dyson and A. Lenard, Stability of matter I, J. Math. Phys. 8:423-434 (1967).

    Google Scholar 

  • F. Dyson and A. Lenard, Stability of matter II',, J. Math. Phys. 9:698-711 (1968).

    Google Scholar 

  • W. Ebeling, Statistische Thermodynamik der gebundenen Zustände in Plasmen, Ann. Phys. (Leipzig) 19:104-112 (1967).

    Google Scholar 

  • W. Ebeling, Abteilung der freien Energie von Quantenplasmen kleiner Dichte aus den exakten Streuphasen, Ann. Phys. (Leipzig) 22:33-39 (1968).

    Google Scholar 

  • W. Ebeling, W.-D. Kraeft and D. Kremp, Theory of Bound States and Ionizatior Equilibrium in Plasmas and Solids (Akademie-Verlag, Berlin, 1976).

    Google Scholar 

  • S. F. Edwards and A. Lenard, Exact statistical mechanics of a one dimensional system with Coulomb forces II. The method of functional integration, J. Math. Phys. 3:778-792 (1962).

    Google Scholar 

  • P. Federbush, Positivity conditions on correlation functions that imply Debye screening, J. Math. Phys. 20:1090-1092 (1979).

    Google Scholar 

  • P. Federbush and T. Kennedy, Surface effects in Debye screening, Commun. Math. Phys. 102:361-423 (1985).

    Google Scholar 

  • C. Fefferman, The atomic and molecular nature of matter, Rev. Math. Iberoamericana 1:1-44 (1985).

    Google Scholar 

  • C. Fefferman, The n-body problem in quantum mechanics, Commun. Pure and Appl. Math. 39(S1):67-109 (1986).

    Google Scholar 

  • C. Fefferman, Stability of Coulomb systems in a magnetic field, Proc. Natl. Acad. Sci. 92:5006-5077 (1995).

    Google Scholar 

  • C. Fefferman, J. Frohlich and G. M. Graf, Stability of ultraviolet-cutoff quantum electrodynamics with non relativistic matter, Commun. Math. Phys. 190:309-330 (1998).

    Google Scholar 

  • A. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill, New York, 1971).

    Google Scholar 

  • R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integral (McGrawHill, New York, 1965).

    Google Scholar 

  • M. E. Fisher, The story of Coulombic criticality, J. Stat. Phys. 75:1-36 (1994).

    Google Scholar 

  • M. E. Fisher, The nature of criticality in ionic fluids, J. Phys.: Condens. Matter 8:9103-9109 (1996).

    Google Scholar 

  • M. E. Fisher and Y. Levin, Criticality in ionic fluids: Debye-Hückel theory, Bjerrum, and beyond, Phys. Rev. Lett. 71:3826-3829 (1993).

    Google Scholar 

  • M. E. Fisher, X. Li and Y. Levin, On the absence of intermediate phases in the two-dimensional Coulomb gas, J. Stat. Phys. 79:1-11 (1995).

    Google Scholar 

  • J.-R. Fontaine, Debye-Hückel limit of quantum Coulomb systems. I. Pressure and diagonal reduced density matrices, Commun. Math. Phys. 103:241-257 (1986).

    Google Scholar 

  • J.-R. Fontaine and P. A. Martin, Equilibrium equations and symmetries of classical Coulomb systems, J. Stat. Phys. 36:163-179 (1984).

    Google Scholar 

  • P. J. Forrester, Selberg correlation integrals and the 1/r 2 quantum many-body problem, Nucl. Phys. B 388:671-699 (1992).

    Google Scholar 

  • P. J. Forrester, Exact integral formulas and asymptotic correlations in the 1/r 2 quantum many-body problem, Phys. Lett. A 179:127-130 (1993a).

    Google Scholar 

  • P. J. Forrester, Recurrence equations for computation of correlations in the 1/r 2 quantum many-body system, J. Stat. Phys. 72:39-50 (1993b).

    Google Scholar 

  • P. J. Forrester, B. Jancovici, and G. Teélez, Universality in some classical Coulomb systems of restricted dimension, J. Stat. Phys. 84:359-378 (1996).

    Google Scholar 

  • J. Fröhlich, Classical and quantum statistical mechanics in one and two dimensions, Commun. Math. Phys. 47:233-268 (1976).

    Google Scholar 

  • J. Fröhlich and Y. M. Park, Correlation inequalities and the thermodynamic limit for classical and quantum continuous systems, Commun. Math. Phys. 59:235-266 (1978).

    Google Scholar 

  • J. Fröhlich and Y. M. Park, Correlation inequalities and the thermodynamic limit for classical and quantum continuous systems. II Bose-Einstein and Fermi-Dirac statistics, J. Stat. Phys. 23:701-753 (1980).

    Google Scholar 

  • J. Fröhlich and T. Spencer, Kosterlitz-Thouless transition in the two dimensional Abelian spin systems and Coulomb gas, Commun. Math. Phys. 81:527-602 (1981a).

    Google Scholar 

  • J. Fröhlich and T. Spencer, On the statistical mechanics of classical Coulomb and dipole gases, J. Stat. Phys. 24:617-701 (1981b).

    Google Scholar 

  • T. Funaki and H. Spohn, Motion by mean curvature from the Ginzburg-Landau ▽φ, interface model, Commun. Math. Phys. 185(1):1-36 (1997).

    Google Scholar 

  • G. Gallavotti, Renormalization theory and ultraviolet stability for scalar fields via renormalization group methods, Rev. Mod. Phys. 57:471-562 (1985).

    Google Scholar 

  • G. Gallavotti and F. Nicolo, Renormalization theory in four dimensional scalar fields I, Commun. Math. Phys. 100:545-590 (1985a).

    Google Scholar 

  • G. Gallavotti and F. Nicolo, The screening phase transition in the two-dimensional Coulomb gas, J. Stat. Phys. 39:133-156 (1985b).

    Google Scholar 

  • G. Gallavotti and F. Nicolo, Renormalization theory in four dimensional scalar fields II, Commun. Math. Phys. 101:247-282 (1986).

    Google Scholar 

  • K. Gawedzki and A. Kupiainen, Block spin renormalization group for dipole gas and (▽φ)4, Ann. Phys. (N.Y.) 147:198-243 (1983).

    Google Scholar 

  • I. M. Gel'fand and G. E. Shilov, Generalized Functions, Vol. 1 (Academic Press, New York, 1964).

    Google Scholar 

  • J. Ginibre, Reduced density matrices of quantum gases. I. Limit of infinite volume, J. Math. Phys. 6:238-251 (1965).

    Google Scholar 

  • J. Ginibre, Some applications of functional integration in statistical mechanics, in Statistical Mechanics and Quantum Field Theory, C. DeWitt and R. Stora, eds., Les Houches (Gordon and Breach, 1971), pp. 327-427.

  • J. Glimm and A. Jaffe, Quantum Physics, A Functional Integral Point of View, 2nd ed. (Springer, Berlin, 1987).

    Google Scholar 

  • J. Glimm, A. Jaffe and T. Spencer, The Wightman axioms and particle structure in the P(φ)2 quantum field model, Ann. Math. 100:585-632 (1974).

    Google Scholar 

  • M. M. Gombert and D. Leger, Wigner-Kirkwood quantum corrections to the pair distribution function in a one-component plasma, Phys. Lett. A 185:417-422 (1994).

    Google Scholar 

  • M. Göpfert and G. Mack, Iterated Mayer expansions for classical gases, Commun. Math. Phys. 81:97-126 (1981).

    Google Scholar 

  • G. M. Graf, Stability of matter through an electrostatic inequality, Helv. Phys. Acta 70:72-79 (1997).

    Google Scholar 

  • G. M. Graf and D. Schenker, The free energy of systems with net charge, Lett. Math. Phys. 35:75-83 (1995a).

    Google Scholar 

  • G. M. Graf and D. Schenker, On the molecular limit of Coulomb gases, Commun. Math. Phys. 174:215-227 (1995b).

    Google Scholar 

  • R. Griffith, Free energy of interacting magnetic dipoles, Phys. Rev. 176:655-659 (1968).

    Google Scholar 

  • J. Groeneveld, Two theorems on classical many-particle systems, Phys. Lett. 3:50-51 (1962).

    Google Scholar 

  • J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids, Academic Press, London.

  • E. Hauge and P. Hemmer, The two-dimensional coulomb gas, Phys. Norv. 5:209-217 (1971).

    Google Scholar 

  • J. Høye and G. Stell, Statistical mechanics of polar systems: dielectric constant for dipolar fluids, J. Chem. Phys. 61(2):562-572 (1974).

    Google Scholar 

  • J. Høye and G. Stell, Statistical mechanics of polar systems II, J. Chem. Phys. 64(5):1952-1966 (1976).

    Google Scholar 

  • J. Høye and G. Stell, Quantum statistical and mechanical models for polarizable fluid, J. Chem. Phys. 75:5133-5142 (1981).

    Google Scholar 

  • J. S. Høye and G. Stell, Path integral formulation for quantized fermion and boson fluids, J. Stat. Phys. 77:361-381 (1994).

    Google Scholar 

  • W. Hughes, Thermodynamics for Coulomb systems: a problem at vanishing particle density, J. Stat. Phys. 41:975-1013 (1985).

    Google Scholar 

  • J. Imbrie, Debye screening for Jellium and other Coulomb systems, Commun. Math. Phys. 87:515-565 (1983a).

    Google Scholar 

  • J. Imbrie, Iterated Mayer expansions and their application to Coulomb systems, in Scaling and Self Similarity in Physics. Renormalization in Statistical Mechanics and Dynamics, J. Fröhlich, ed. (Birkhäuser, Boston, 1983b), pp. 163-179.

    Google Scholar 

  • B. Jancovici, Quantum corrections to the radial distribution function of a fluid, Mol. Phys. 32:1177-1179 (1976).

    Google Scholar 

  • B. Jancovici, Exact results for the two-dimensional one-component plasma, Phys. Rev. Lett. 46:386-388 (1981).

    Google Scholar 

  • B. Jancovici, Two-dimensional Coulomb systems: Solvable models at Γ=2, in Proceedings of the International Conference on Physics of Strongly Coupled Plasma, S. Ichimaru, ed. (Yamada Science Foundation, Elsevier, 1990), pp. 285-296.

  • B. Jancovici, Inhomogeneous two-dimensional plasmas, in Fundamentals of Inhomogeneous Fluids, D. Henderson, ed. (Marcel Dekker, New York, 1992), pp. 201-237.

    Google Scholar 

  • B. Jancovici, Universal critical-like features of Coulomb systems, in Proceedings of the International Conference on Physics of Strongly Coupled Plasma, W. Kraeft and M. Schlanges, eds. (World Scientific, Singapore, 1996), pp. 109-118.

    Google Scholar 

  • B. Jancovici, G. Manificat, and C. Pisani, Coulomb systems seen as critical systems: Finite-size effects in two dimensions, J. Stat. Phys. 76:307-329 (1994).

    Google Scholar 

  • M. Kac, On the partition function of one dimensional gas, Phys. Fluids 2:8-12 (1959).

    Google Scholar 

  • T. Kennedy, A lower bound for a classical charge symmetric system, J. Stat. Phys. 28:633-638 (1982).

    Google Scholar 

  • T. Kennedy, Debye-Hückel theory for charge symmetric Coulomb systems, Commun. Math. Phys. 92:269-294 (1983).

    Google Scholar 

  • T. Kennedy, Mean field theory for Coulomb systems, J. Stat. Phys. 37:529-559 (1984).

    Google Scholar 

  • M. Kiessling, Uniform upper bounds (and thermodynamic limit) for the correlation functions of symmetric Coulomb-type systems, J. Stat. Phys. 66:1359-1382 (1992).

    Google Scholar 

  • H. Koch and P. Wittwer, On the renormalization group transformation for scalar hierarchical models, Commun. Math. Phys. 138:537-568 (1991).

    Google Scholar 

  • H. Koch and P. Wittwer, A nontrivial renormalization group fixed point for the Dyson-Baker hierarchical model, Commun. Math. Phys. 164:627-647 (1994).

    Google Scholar 

  • M. Kosterlitz and D. J. Thouless, Ordering, metastability and phase transitions in two-dimensions, J. Phys. C 6:1181-1203 (1973).

    Google Scholar 

  • W.-D. Kraeft, D. Kremp, W. Ebeling, and G. Röpke, Quantum Statistics of Charged Particles (Plenum Press, New York, 1986).

    Google Scholar 

  • C. Langreth and S. H. Vosko, Exact electron-gas response function at high density, Phys. Rev. Lett. 59:497-500 (1987).

    Google Scholar 

  • J. Lebowitz and E. Lieb, Existence of thermodynamics for real matter with Coulomb forces, Phys. Rev. Lett. 22:631-634 (1969).

    Google Scholar 

  • J. Lebowitz and R. Pena, Low density form of the free energy of real matter, J. Chem. Phys. 59:1362-1364 (1973).

    Google Scholar 

  • J. Lebowitz and G. Stell, Equilibrium properties of a system of charged particles, J. Chem. Phys. 49:3706-3717 (1968).

    Google Scholar 

  • J. L. Lebowitz and P. A. Martin, On potential and field fluctuations in classical Coulomb systems, J. Stat. Phys. 34:287-311 (1984).

    Google Scholar 

  • B. P. Lee and M. E. Fisher, Density fluctuations in an electrolyte from the generalized Debye-Hückel theory, Phys. Rev. Lett. 76:2906-2909 (1996).

    Google Scholar 

  • B. P. Lee and M. E. Fisher, Charge oscillations in Debye-Hückel theory, Eur. Phys. Lett. 39:611-616 (1997).

    Google Scholar 

  • P. Lemberger, Large-field versus small-field expansions and Sobolev inequalities, J. Stat. Phys. 79(3-4):525-568 (1995).

    Google Scholar 

  • A. Lenard, Exact statistical mechanics of a one dimensional system with Coulomb forces, J. Math. Phys. 2:682-693 (1961).

    Google Scholar 

  • Y. Levin and M. E. Fisher, Criticality in the hard sphere ionic fluid, Physica A 225:164-220 (1995).

    Google Scholar 

  • E. H. Lieb, The stability of matter, Rev. Mod. Phys. 48:553-569 (1976).

    Google Scholar 

  • E. H. Lieb, The stability of matter: from atoms to stars, Bull. Am. Math. Soc. 22:1-49 (1990).

    Google Scholar 

  • E. H. Lieb and J. Lebowitz, The constitution of matter: existence of thermodynamics for systems composed of electrons and nuclei, Adv. Math. 9:316-398 (1972).

    Google Scholar 

  • E. H. Lieb and H. Narnhofer, The thermodynamic limit for jellium, J. Stat. Phys. 12:291-310 (1975). Erratum: J. Stat. Phys. 14:465 (1976).

    Google Scholar 

  • E. H. Lieb, M. Loss, and J. Solovej, Stability of matter in magnetic fields, Phys. Rev. Lett. 75:985-989 (1995).

    Google Scholar 

  • S. Lukyanov and A. Zamolodchikov, Exact expectation values of local fields in the quantum Sine-Gordon model, Nuclear Phys. B 493:571-587 (1997).

    Google Scholar 

  • A. C. Maags and N. W. Ashcroft, Electronic fluctuations and cohesion in metals, Phys. Rev. Lett. 59:113-116 (1987).

    Google Scholar 

  • G. Mack and A. Pordt, Convergent perturbation expansions in Euclidean quantum field theory, Commun. Math. Phys. 97:267-298 (1985).

    Google Scholar 

  • G. Mack and A. Pordt, Convergent weak coupling expansions for lattice field theories that look like perturbation series, Rev. Math. Phys. 1:47-87 (1989).

    Google Scholar 

  • N. Macris and P. A. Martin, Ionization equilibrium in the electron-proton gas, J. Stat. Phys. 60:619-637 (1990).

    Google Scholar 

  • P. A. Martin, Sum rules in charged fluids, Rev. Mod. Phys. 60:1075-1127 (1988).

    Google Scholar 

  • P. A. Martin, Lecture on Fefferman's proof of the atomic and molecular nature of matter, Acta Physica Polonica B 24:751-770 (1993).

    Google Scholar 

  • P. A. Martin, Atomic correlations and van der Waals forces, Helv. Phys. Acta 70:80-95 (1996).

    Google Scholar 

  • J. Mayer and G. Mayer, Statistical Mechanics, 2nd ed. (Wiley, 1977).

  • J. E. Mayer, The theory of ionic solutions, J. Chem. Phys. 18:1426-1436 (1950).

    Google Scholar 

  • D. A. McQuarrie, Statistical Mechanics (Harper-Collins, New York, 1976).

    Google Scholar 

  • J. Meeron, Theory of potentials of average force and radial distribution functions in ionic solutions, J. Chem. Phys. 28:630-643 (1958).

    Google Scholar 

  • J. Meeron, Plasma Physics (McGraw-Hill, New York, 1961).

    Google Scholar 

  • A. Naddaf and T. Spencer, On homogenization and scaling limit of some gradient perturbations of a massless free field, Commun. Math. Phys. 183:55-84 (1997).

    Google Scholar 

  • C. W. Newman, Normal fluctuations and the FKG inequalities, Commun. Math. Phys. 74:119-128 (1980).

    Google Scholar 

  • C. W. Newman and A. L. Wright, An invariance principle for certain dependent sequences, Ann. Probab. 9:671-675 (1981).

    Google Scholar 

  • C. W. Newman and A. L. Wright, Associated random variables and martingale inequalities, Z. Wahrsch. verw. Gebiete 59:361-371 (1982).

    Google Scholar 

  • L. Onsager, Electrostatic interaction of molecules, J. Phys. Chem. 43:189-196 (1939).

    Google Scholar 

  • Y. M. Park, Lack of screening in the continuous dipole system, Commun. Math. Phys. 70:161-167 (1979).

    Google Scholar 

  • O. Penrose, Convergence of fugacity expansions for fluids and lattice gases, J. Math. Phys. 4:1312-1320 (1963).

    Google Scholar 

  • O. Penrose, Convergence of fugacity expansions for classical systems, in Statistical Mechanics, Foundations anal Applications, T. A. Bak, ed., I.U.P.A.P. Meeting, Copenhagen, 1966 (Benjamin Inc., New York, 1967), pp. 101-109.

    Google Scholar 

  • J. Polchinski, Renormalization and effective Lagrangians, Nucl. Phys. B 231:269 (1984).

    Google Scholar 

  • E. L. Pollock and J. P. Hansen, Statistical mechanics of dense ionized matter. II. equilibrium properties and melting transition of the crystallized one component plasma, Phys. Rev. A 8:3110-3122 (1973).

    Google Scholar 

  • M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol IV. Analysis of Operators (Academic Press, New York, 1979).

    Google Scholar 

  • V. Rivasseau, From Perturbative to Constructive Renormalization, Princeton Series in Physics (Princeton University Press, Princeton, NJ, 1991).

    Google Scholar 

  • G. Roepstorff, Path Integral Approach to Quantum Physics (Springer, Berlin, 1994).

    Google Scholar 

  • D. Ruelle, Correlation functions of classical gases, Ann. Probab. 25:109-120 (1963).

    Google Scholar 

  • D. Ruelle, Statistical Mechanics (W. A. Benjamin Inc., London, 1969).

    Google Scholar 

  • A. J. F. Siegert, Partition functions as averages of functionals of Gaussian random functions, Physica 26:530-535 (1960).

    Google Scholar 

  • B. Simon, Functional Integration and Quantum Physics (Academic Press, New York, 1979).

    Google Scholar 

  • F. A. Smirnov, Form Factors in Completely Integrable Models of Quantum Field Theory, Vol. 14 of Advanced Series in Mathematical Physics (World Scientific, 1992).

  • E. Speer, Mayer coefficients in two-dimensional Coulomb systems, J. Stat Phys. 42:895-920 (1986).

    Google Scholar 

  • G. Stell, Criticality and phase transitions in ionic fluids, J. Stat. Phys. 78:197-238 (1995).

    Google Scholar 

  • G. Stell, G. Patey and J. Høye, Dielectric constants of fluid models: Statistical mechanical theory and its quantitative implementation, Advances in Chemical Theory 48:183-328 (1981).

    Google Scholar 

  • W.-S. Yang, Debye screening for two-dimensional Coulomb systems at high temperatures, J. Stat. Phys. 49:1-32 (1987).

    Google Scholar 

  • S. Yeh, Y. Zhou and G. Stell, Phase separation of ionic fluids: an extended Ebeling-Grigo approach, J. Phys. Chem. 100:1415-1419 (1996).

    Google Scholar 

  • D. M. Zuckerman, M. E. Fisher and B. P. Lee, Statistical physics, plasmas, fluids and related interdisciplinary topics, Phys. Rev. E 56:6569-6580 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brydges, D.C., Martin, P.A. Coulomb Systems at Low Density: A Review. Journal of Statistical Physics 96, 1163–1330 (1999). https://doi.org/10.1023/A:1004600603161

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004600603161

Navigation