Skip to main content
Log in

Universal Large-Deviation Function of the Kardar–Parisi–Zhang Equation in One Dimension

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Using the Bethe ansatz, we calculate the whole large-deviation function of the displacement of particles in the asymmetric simple exclusion process (ASEP) on a ring. When the size of the ring is large, the central part of this large deviation function takes a scaling form independent of the density of particles. We suggest that this scaling function found for the ASEP is universal and should be characteristic of all the systems described by the Kardar–Parisi–Zhang equation in 1+1 dimension. Simulations done on two simple growth models are in reasonable agreement with this conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. T. Halpin-Healy and Y. C. Zhang, Kinetic roughening phenomena, stochastic growth, directed polymers and all that, Phys. Rep. 254:216 (1995).

    Google Scholar 

  2. M. Kardar, G. Parisi, and Y.-C. Zhang, Dynamic scaling of growing interfaces, Phys. Rev. Lett. 56:889 (1986).

    Google Scholar 

  3. A. L. Barabási and H. E. Stanley, Fractal Concepts in Surface Growth (Cambridge University Press, 1995).

  4. F. Family and T. Vicsek, Dynamics of Fractal Surfaces (World Scientific, Singapore, 1991).

    Google Scholar 

  5. B. Derrida and J. L. Lebowitz, Exact large deviation function in the asymmetric exclusion process, Phys. Rev. Lett. 80:209 (1998).

    Google Scholar 

  6. P. Meakin, P. Ramanlal, L. M. Sander, and R. C. Ball, Ballistic deposition on surfaces, Phys. Rev. A 34:5091 (1986).

    Google Scholar 

  7. L. H. Tang, Waiting time formulation of surface growth and mapping to directed polymers in a random medium, in Growth Patterns in Physical Sciences and Biology, E. Louis, S. M. Sander, P. Meakin, and J. M. Garcia-Ruiz, eds. (Plenum, New York, 1992).

    Google Scholar 

  8. B. Derrida and M. R. Evans, The asymmetric exclusion model: exact results through a matrix approach, in Nonequilibrium Statistical Mechanics in One Dimension, V. Privman, ed. (Cambridge University Press, 1997), p. 277.

  9. F. R. Gantmacher, The Theory of Matrices, Vol. 2 (New York, Chelsea Pub. Co., 1959).

    Google Scholar 

  10. J. Krug, Origins of scale invariance in growth processes, Adv. Phys. 46:139 (1997).

    Google Scholar 

  11. L.-H. Gwa and H. Spohn, Six-vertex model, roughened surfaces, and an asymmetric spin Hamiltonian, Phys. Rev. Lett. 68:725 (1992).

    Google Scholar 

  12. L.-H. Gwa and H. Spohn, Bethe solution for the dynamical-scaling exponent of the noisy Burgers equation, Phys. Rev. A 46:844 (1992).

    Google Scholar 

  13. J. M. Kim and J. M. Kosterlitz, Growth in a restricted solid-on-solid model, Phys. Rev. Lett. 62:2289 (1989).

    Google Scholar 

  14. J. Kertész and D. E. Wolf, Noise reduction in Eden models: II. Surface structure and intrinsic width, J. Phys. A 21:747 (1988).

    Google Scholar 

  15. J. Krug and H. Spohn, Anomalous fluctuations in the driven and damped Sine-Gordon chain, Europhys. Lett. 8:219 (1989).

    Google Scholar 

  16. E. Ben-Naim, A. R. Bishop, I. Daruka, and P. L. Krapivsky, Mean-field theory of polynuclear surface growth, J. Phys. A. Math. Gen. 31:5001 (1998).

    Google Scholar 

  17. J. M. Kim, M. A. Moore, and A. J. Bray, Zero-temperature directed polymers in a random potential, Phys. Rev. A 44:2345 (1991).

    Google Scholar 

  18. T. Halpin-Healy, Directed polymers in random media: Probability distributions, Phys. Rev. A 44:R3415 (1991).

    Google Scholar 

  19. J. Krug, P. Meakin and T. Halpin-Healy, Amplitude universality for driven interfaces and directed polymers in random media, Phys. Rev. A 45:638 (1992).

    Google Scholar 

  20. Y. C. Zhang, Directed polymers in Hartree-Fock approximation, J. Stat. Phys. 57:1123 (1989).

    Google Scholar 

  21. C. N. Yang and C. P. Yang, Thermodynamics of a one-dimensional system of Bosons with repulsive Delta-function interaction, J. Mach. Phys. 10:1115 (1969).

    Google Scholar 

  22. D. Kim, Bethe ansatz solution for crossover scaling functions of the asymmetric XYZ chain and the Kardar-Parisi-Zhang-type growth model, Phys. Rev. E 52:3512 (1995).

    Google Scholar 

  23. D. Kim, Asymmetrix XYZ chain at the antiferromagnetic transition: Spectra and partition functions, J. Phys. A 30:3817 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Derrida, B., Appert, C. Universal Large-Deviation Function of the Kardar–Parisi–Zhang Equation in One Dimension. Journal of Statistical Physics 94, 1–30 (1999). https://doi.org/10.1023/A:1004599526997

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004599526997

Navigation