Skip to main content
Log in

Antiferromagnetic Potts Models on the Square Lattice: A High-Precision Monte Carlo Study

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the antiferromagnetic q-state Potts model on the square lattice for q=3 and q=4, using the Wang–Swendsen–Kotecký (WSK) Monte Carlo algorithm and a powerful finite-size-scaling extrapolation method. For q=3 we obtain good control up to correlation length ξ∼5000; the data are consistent with ξ(β)=Ae 2β β p(1+a 1 e β+ ...) as β→∞, with p≈1. The staggered susceptibility behaves as χ staggξ 5/3. For q=4 the model is disordered (ξ≲2) even at zero temperature. In appendices we prove a correlation inequality for Potts antiferromagnets on a bipartite lattice, and we prove ergodicity of the WSK algorithm at zero temperature for Potts antiferromagnets on a bipartite lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. B. Potts, Proc. Camb. Philos. Soc. 48, 106 (1952).

    Google Scholar 

  2. F. Y. Wu, Rev. Mod. Phys. 54, 235 (1982); 55, 315 (E) (1983).

    Google Scholar 

  3. F. Y. Wu, J. Appl. Phys. 55, 2421 (1984).

    Google Scholar 

  4. R. J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic Press, London/New York, 1982).

    Google Scholar 

  5. C. Itzykson, H. Saleur, and J.-B. Zuber, eds., Conformal Invariance and Applications to Statistical Mechanics (World Scientific, Singapore, 1988).

    Google Scholar 

  6. P. Di Francesco, P. Mathieu, and D. Sénéchal, Conformal Field Theory (Springer-Verlag, New York, 1997).

    Google Scholar 

  7. B. Nienhuis, J. Stat. Phys. 34, 731 (1984).

    Google Scholar 

  8. R. Kotecký, unpublished, cited in H.-O. Georgii, Gibbs Measures and Phase Transitions (de Gruyter, Berlin/New York, 1988), pp. 148-149, 457.

    Google Scholar 

  9. J. Salas and A. D. Sokal, J. Stat. Phys. 86, 551 (1997), cond-mat/9603068.

    Google Scholar 

  10. J.-S. Wang, R. H. Swendsen, and R. Kotecký, Phys. Rev. Lett. 63, 109 (1989).

    Google Scholar 

  11. J.-S. Wang, R. H. Swendsen, and R. Kotecký, Phys. Rev. B 42, 2465 (1990).

    Google Scholar 

  12. M. Lubin and A. D. Sokal, Phys. Rev. Lett. 71, 1778 (1993), hep-lat/9304002.

    Google Scholar 

  13. S. J. Ferreira and A. D. Sokal, Phys. Rev. B 51, 6727 (1995), hep-lat/9405015.

    Google Scholar 

  14. M. Luüscher, P. Weisz, and U. Wolff, Nucl. Phys. B 359, 221 (1991).

    Google Scholar 

  15. J.-K. Kim, Phys. Rev. Lett. 70, 1735 (1993).

    Google Scholar 

  16. J.-K. Kim, Nucl. Phys. B (Proc. Suppl.) 34, 702 (1994).

    Google Scholar 

  17. J.-K. Kim, Phys. Rev. D 50, 4663 (1994).

    Google Scholar 

  18. J.-K. Kim, Europhys. Lett. 28, 211 (1994).

    Google Scholar 

  19. J.-K. Kim, Phys. Lett. B 345, 469 (1995), hep-lat/9502005.

    Google Scholar 

  20. S. Caracciolo, R. G. Edwards, S. J. Ferreira, A. Pelissetto, and A. D. Sokal, Phys. Rev. Lett. 74, 2969 (1995), hep-lat/9409004.

    Google Scholar 

  21. G. Mana, A. Pelissetto and A. D. Sokal, Phys. Rev. D 55, 3674 (1997), hep-lat/9610021.

    Google Scholar 

  22. S. Caracciolo, A. Pelissetto, and A. D. Sokal, in preparation.

  23. R. J. Baxter, Proc. Roy. Soc. London A 383, 43 (1982).

    Google Scholar 

  24. L. Onsager, Phys. Rev. 65, 117 (1944).

    Google Scholar 

  25. A. Lenard, cited in E. H. Lieb, Phys. Rev. 162, 162 (1967) at pp. 169-170.

    Google Scholar 

  26. R. J. Baxter, J. Math. Phys. 11, 3116 (1970).

    Google Scholar 

  27. T. T. Truong and K. D. Schotte, J. Phys. A 19, 1477 (1986).

    Google Scholar 

  28. P. A. Pearce and K. A. Seaton, Ann. Phys. 193, 326 (1989).

    Google Scholar 

  29. D. Kim and P. A. Pearce, J. Phys. A 22, 1439 (1989).

    Google Scholar 

  30. M. den Nijs, M. P. Nightingale, and M. Schick, Phys. Rev. B 26, 2490 (1982).

    Google Scholar 

  31. J. Kolafa, J. Phys. A 17, L777 (1984).

    Google Scholar 

  32. H. Park and M. Widom, Phys. Rev. Lett. 63, 1193 (1989).

    Google Scholar 

  33. J. K. Burton, Jr. and C. L. Henley, J. Phys. A 30, 8385 (1997), cond-mat/9708171.

    Google Scholar 

  34. J. Salas and A. D. Sokal, J. Stat. Phys. 92, 729 (1998), cond-mat/9801079.

    Google Scholar 

  35. M. P. Nightingale and M. Schick, J. Phys. A 15, L39 (1982).

    Google Scholar 

  36. H. Saleur, Nucl. Phys. B 360, 219 (1991).

    Google Scholar 

  37. H. Saleur, Commun. Math. Phys. 132, 657 (1990).

    Google Scholar 

  38. C. L. Henley, in preparation.

  39. S. Caracciolo, R. G. Edwards, A. Pelissetto, and A. D. Sokal, Nucl. Phys. B 403, 475 (1993), hep-lat/9205005.

    Google Scholar 

  40. M. B. Priestley, Spectral Analysis and Time Series, Vols. 1 and 2 (Academic, London, 1981).

    Google Scholar 

  41. T. W. Anderson, The Statistical Analysis of Time Series (Wiley, New York, 1971).

    Google Scholar 

  42. N. Madras and A. D. Sokal, J. Stat. Phys. 50, 109 (1988).

    Google Scholar 

  43. A. D. Sokal, in Functional Integration: Basics and Applications (1996 Cargèse summer school), C. DeWitt-Morette, P. Cartier, and A. Folacci, eds. (Plenum, New York, 1997).

    Google Scholar 

  44. M. N. Barber, in Phase Transitions and Critical Phenomena, Vol. 8, C. Domb and J. L. Lebowitz, eds. (Academic Press, London, 1983).

    Google Scholar 

  45. J. L. Cardy (ed.), Finite-Size Scaling (North-Holland, Amsterdam, 1988).

    Google Scholar 

  46. V. Privman, ed., Finite Size Scaling and Numerical Simulation of Statistical Systems (World Scientific, Singapore, 1990).

  47. H. Flyvbjerg and F. Larsen, Phys. Lett. B 266, 92 (1991).

    Google Scholar 

  48. H. Flyvbjerg and F. Larsen, Phys. Lett. B 266, 99 (1991).

    Google Scholar 

  49. P. Nightingale, Proc. Konink. Ned. Akad. B 82, 235, 245, 269 (1978).

    Google Scholar 

  50. S. Hassani, Foundations of Mathematical Physics (Allyn & Bacon, Boston, 1991).

    Google Scholar 

  51. R. H. Swendsen and J.-S. Wang, Phys. Rev. Lett. 58, 86 (1987).

    Google Scholar 

  52. U. Wolff, Phys. Rev. Lett. 62, 361 (1989).

    Google Scholar 

  53. A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 61, 2635 (1988).

    Google Scholar 

  54. A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 63, 1195 (1989).

    Google Scholar 

  55. R. H. Swendsen, Physica A 194, 53 (1993).

    Google Scholar 

  56. A. M. Ferrenberg, D. P. Landau, and R. H. Swendsen, Phys. Rev. E 51, 5092 (1995).

    Google Scholar 

  57. S. Caraccioio, A. Pelissetto, and A. D. Sokal, J. Stat. Phys. 60, 1 (1990).

    Google Scholar 

  58. A. D. Sokal, Nucl. Phys. B (Proc. Suppl.) 20, 55 (1991).

    Google Scholar 

  59. T. Mendes, A. Pelissetto, and A. D. Sokal, Nucl. Phys. B 477, 203 (1996), hep-lat/9604015.

    Google Scholar 

  60. F. J. Wegner, Phys. Rev. B 5, 4529 (1972).

    Google Scholar 

  61. F. J. Wegner and E. K. Riedel, Phys. Rev. B 7, 248 (1973).

    Google Scholar 

  62. F. J. Wegner, in Phase Transitions and Critical Phenomena, Vol. 6, C. Domb and M. S. Green, eds. (Academic Press, London, 1976), Section V.E.

    Google Scholar 

  63. M. Le Bellac, Quantum and Statistical Field Theory (Oxford University Press, Oxford, 1991).

    Google Scholar 

  64. E. Brézin, J.-C. LeGuillou, and J. Zinn-Justin, Phys. Rev. D 8, 2418 (1973).

    Google Scholar 

  65. H. S. Kogon, J. Phys. A 14, 3253 (1981).

    Google Scholar 

  66. A. I. Larkin and D. E. Khmel'nitskii, Zh. Eksp. Teor. Fiz. 56, 2087 (1969) [Sov. Phys.-JETP 29, 1123 (1969)].

    Google Scholar 

  67. E. Brézin and J. Zinn-Justin, Phys. Rev. B 13, 251 (1976).

    Google Scholar 

  68. M. Nauenberg and D. J. Scalapino, Phys. Rev. Lett. 44, 837 (1980).

    Google Scholar 

  69. J. L. Cardy, M. Nauenberg, and D. J. Scalapino, Phys. Rev. B 22, 2560 (1980).

    Google Scholar 

  70. J. Salas and A. D. Sokal, J. Stat. Phys. 88, 567 (1997), hep-lat/9607030.

    Google Scholar 

  71. G. S. Sylvester, J. Stat. Phys. 15, 327 (1976).

    Google Scholar 

  72. D. Szaàsz, J. Stat. Phys. 19, 453 (1978).

    Google Scholar 

  73. G. Mack and V. B. Petkova, Ann. Phys. 123, 442 (1979).

    Google Scholar 

  74. J. Fröhlich, Phys. Lett. B 83, 195 (1979).

    Google Scholar 

  75. A. Patrascioiu and E. Seiler, J. Stat. Phys. 69, 573 (1992).

    Google Scholar 

  76. M. Aizenman, J. Stat. Phys. 77, 351 (1994).

    Google Scholar 

  77. S. Caracciolo, R. G. Edwards, A. Pelissetto, and A. D. Sokal, Phase diagram and universality classes of RPN-1 and mixed isovector/isotensor σ—models in two dimensions, in preparation.

  78. M. Aizenman, J. T. Chayes, L. Chayes, and C. M. Newman, J. Stat. Phys. 50, 1 (1988).

    Google Scholar 

  79. C. M. Fortuin, Physica 59, 545 (1972).

    Google Scholar 

  80. J. Adler, A. Brandt, W. Janke, and S. Shmulyan, J. Phys. A 28, 5117 (1995).

    Google Scholar 

  81. A. P. Gottlob and M. Hasenbusch, Physica A 210, 217 (1994), cond-mat/9404087.

    Google Scholar 

  82. A. P. Gottlob and M. Hasenbusch, J. Stat. Phys. 77, 919 (1994), cond-mat/9406092.

    Google Scholar 

  83. M. Kolesik and M. Suzuki, J. Phys. A 28, 6543 (1995), cond-mat/9504091.

    Google Scholar 

  84. R. K. Heilmann, J.-S. Wang, and R. H. Swendsen, Phys. Rev. B 53, 2210 (1996), cond-mat/9509140.

    Google Scholar 

  85. Y. Ueno, G. Sun, and I. Ono, J. Phys. Soc. Japan 58, 1162 (1989).

    Google Scholar 

  86. A. L. Talapov and H. W. J. Blöte, J. Phys. A 29, 5727 (1996), cond-mat/9603013.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferreira, S.J., Sokal, A.D. Antiferromagnetic Potts Models on the Square Lattice: A High-Precision Monte Carlo Study. Journal of Statistical Physics 96, 461–530 (1999). https://doi.org/10.1023/A:1004599121565

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004599121565

Navigation