Skip to main content
Log in

Random Analytic Chaotic Eigenstates

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The statistical properties of random analytic functions ψ(z) are investigated as a phase-space model for eigenfunctions of fully chaotic systems. We generalize to the plane and to the hyperbolic plane a theorem concerning the equidistribution of the zeros of ψ(z) previously demonstrated for a spherical phase space [SU(2) polynomials]. For systems with time-reversal symmetry, the number of real roots is computed for the three geometries. In the semiclassical regime, the local correlation functions are shown to be universal, independent of the system considered or the geometry of phase space. In particular, the autocorrelation function of ψ is given by a Gaussian function. The connections between this model and the Gaussian random function hypothesis as well as the random matrix theory are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. L. Mehta, Random Matrices (Academic Press, New York, 1991).

    Google Scholar 

  2. O. Bohigas, in Proceedings of the Les Houches Summer School, Chaos et Physique Quantique/Chaos and Quantum Physics, Les Houches, Session LII, M.-J. Giannoni, A. Voros, and J. Zinn-Justin, eds. (Elsevier, 1991).

  3. C. E. Porter, ed., Statistical Theories of Spectra: Fluctuations (Academic Press, New York, 1965).

    Google Scholar 

  4. A. Voros, Ann. Inst. Henri Poincaré A 24:31 (1976); Ann. Inst. Henri Poincaré A 26:343 (1977).

    Google Scholar 

  5. M. V. Berry, J. Phys. A: Math. Gen. 10:2083 (1977).

    Google Scholar 

  6. E. B. Bogomolny, Physica D 31:169 (1988).

    Google Scholar 

  7. M. V. Berry, Proc. R. Soc. London A 423:219 (1989).

    Google Scholar 

  8. E. Bogomolny, O. Bohigas, and P. Lebœuf, Phys. Rev. Lett. 68:2726 (1992).

    Google Scholar 

  9. E. Bogomolny, O. Bohigas, and P. Lebœuf, J. Stat. Phys. 85:639 (1996).

    Google Scholar 

  10. B. Shiffman and S. Zelditch, Distribution of zeros of random and quantum chaotic sections of positive line bundles, preprint math_9803052.

  11. N. L. Balazs and A. Voros, Phys. Rep. 143:109 (1986).

    Article  Google Scholar 

  12. A. Perelomov, Generalized Coherent States and their Applications (Springer, New York, 1986).

    Google Scholar 

  13. V. I. Bargmann, Commun. Pure Appl. Math. 14:187 (1961); 20:1 (1967).

    Google Scholar 

  14. A. Edelman and E. Kostlan, Bull. Amer. Math. Soc. 32:1 (1995).

    Google Scholar 

  15. J. Hannay, J. Phys. A: Math. Gen. 29:L101 (1996).

    Google Scholar 

  16. P. Lebœuf and P. Shukla, J. Phys. A: Math. Gen. 29:4827 (1996).

    Google Scholar 

  17. P. Bleher and X. Di, J. Stat. Phys. 88:269 (1997).

    Google Scholar 

  18. M. Kac, Probability and Related Topics in Physical Sciences (Wiley, New York, 1959).

    Google Scholar 

  19. J. Hannay, The chaotic analytic function (preprint 1998).

  20. The observation-based on numerical computations-that the zeros of chaotic eigenfunctions tend to fill uniformly the whole available phase space was made in P. Lebœuf and A. Voros, J. Phys. A: Math. Gen. 23:1765 (1990); see also Quantum Chaos, G. Casati and B. Chirikov, eds. (Cambridge University Press, 1995).

    Google Scholar 

  21. S. Nonnenmacher and A. Voros, J. Stat. Phys. 92:431 (1998).

    Google Scholar 

  22. T. Prosen, Physica D 91:244 (1996) and private communication.

    Google Scholar 

  23. J.-M. Tualle and A. Voros, Chaos, Solitons & Fractals 5:1085 (1995).

    Google Scholar 

  24. T. Prosen, J. Phys. A 29:4417 (1996).

    Google Scholar 

  25. V. N. Prigodin et al., Phys. Rev. Lett. 75:2392 (1995); see also a comment on the previous paper by M. Srednicki, cond-mat/9512115.

    Google Scholar 

  26. P. Forrester and G. Honner, “ Exact statistical properties of the zeros of complex random polynomials,” preprint 1998.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leboeuf, P. Random Analytic Chaotic Eigenstates. Journal of Statistical Physics 95, 651–664 (1999). https://doi.org/10.1023/A:1004595310043

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004595310043

Navigation