Skip to main content
Log in

Nonmonotonic Behavior in Hard-Core and Widom–Rowlinson Models

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We give two examples of nonmonotonic behavior in symmetric systems exhibiting more than one critical point at which spontanoous symmetry breaking appears or disappears. The two systems are the hard-core model and the Widom–Rowlinson model, and both examples take place on a variation of the Cayley tree (Bethe lattice) devised by Schonmann and Tanaka. We obtain similar, though less constructive, examples of nonmonotonicity via certain local modifications of any graph, e.g., the square lattice, which is known to have a critical point for either model. En route we discuss the critical behavior of the Widom–Rowlinson model on the ordinary Cayley tree. Some results about monotonicity of the phase transition phenomenon relative to graph structure are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. I. Benjamini and O. Schramm, Percolation beyond Z d: many questions and a few answers, Electr. Commun. Probab. 1:71–82 (1996).

    Google Scholar 

  2. J. Van den Berg, A uniqueness condition for Gibbs measures with application to the 2–dimensional Ising antiferromagnet, Commun. Math. Phys. 152:161–166 (1993).

    Google Scholar 

  3. J. Van den Berg and A. Ermakov, A new lower bound for the critical probability of site percolation on the square lattice, Random Structures Algorithms 8:199–212 (1996).

    Google Scholar 

  4. J. Van den Berg and J. Steif, Percolation and the hard core lattice gas model, Stoch. Proc. Appl. 49:179–197 (1994).

    Google Scholar 

  5. G. Brightwell, O. Häggström, and P. Winkler, Nonmonotonic behavior in hard-core and Widom-Rowlinson models, CDAM Research Report LSE-CDAM-98–13.

  6. G. Brightwell and P. Winkler, Graph homomorphisms and phase transitions, J. Comb. Theory B, to appear (1998).

  7. G. Brightwell and P. Winkler, Gibbs measures and dismantlable graphs, CDAM Research Report LSE-CDAM-97–17.

  8. J. T. Chayes, L. Chayes, and R. Kotecký, The analysis of the Widom-Rowlinson model by stochastic geometric methods, Commun. Math. Phys. 172:551–569 (1995).

    Google Scholar 

  9. R. L. Dobrushin, The problem of uniqueness of a Gibbs random field and the problem of phase transition, Funct. Anal. Appl. 2:302–312 (1968).

    Google Scholar 

  10. H.-O. Georgii, Gibbs Measures and Phase Transitions (de Gruyter, New York, 1988).

    Google Scholar 

  11. G. Giacomin, J. L. Lebowitz, and C. Maes, Agreement percolation and phase coexistence in some Gibbs systems, J. Statist. Phys. 80:1379–1403 (1995).

    Google Scholar 

  12. G. Grimmett, Percolation (Springer, New York, 1989).

    Google Scholar 

  13. O. Häggström, Ergodicity of the hard core model on Z 2 with parity-dependent activities, Ark. Mat. 35:171–184 (1997).

    Google Scholar 

  14. O. Häggström, Random-cluster representations in the study of phase transitions, Markov Proc. Relat. Fields 4:275–321 (1998).

    Google Scholar 

  15. O. Häggström, Random-cluster analysis of a class of binary lattice gases, J. Statist. Phys. 91:47–74 (1998).

    Google Scholar 

  16. F. P. Kelly, Stochastic models of computer communication systems, J. Roy. Statist. Soc. B 47:379–395 (1985).

    Google Scholar 

  17. J. L. Lebowitz and G. Gallavotti, Phase transitions in binary lattice gases, J. Math. Phys. 12:1129–1133 (1971).

    Google Scholar 

  18. J. L. Lebowitz, A. Mazel, P. Nielaba, and L. Šamaj, Ordering and demixing transitions in multicomponent Widom-Rowlinson models, Phys. Rev. E 52:5985–5996 (1995).

    Google Scholar 

  19. T. M. Liggett, Interacting Particle Systems (Springer, New York, 1985).

    Google Scholar 

  20. R. Schonmann and N. Tanaka, Lack of monotonicity in ferromagnetic Ising model phase diagrams, Ann. Appl. Probab. 8:234–245 (1998).

    Google Scholar 

  21. H. Tanemura, A system of infinitely many mutually reflecting Brownian balls in R d, Probab. Th. Relat. Fields 104:399–426 (1996).

    Google Scholar 

  22. J. C. Wheeler and B. Widom, Phase equilibrium and critical behavior in a two-component Bethe-lattice gas or three-component Bethe-lattice solution, J. Chem. Phys. 52:5334–5343 (1970).

    Google Scholar 

  23. B. Widom and J. S. Rowlinson, New model for the study of liquid-vapor phase transition, J. Chem. Phys. 52:1670–1684 (1970).

    Google Scholar 

  24. J. C. Wierman, Substitution method critical probability bounds for the square lattice site percolation model, Comb. Prob. Computing 4:181–188 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brightwell, G.R., Häggström, O. & Winkler, P. Nonmonotonic Behavior in Hard-Core and Widom–Rowlinson Models. Journal of Statistical Physics 94, 415–435 (1999). https://doi.org/10.1023/A:1004592103315

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004592103315

Navigation