Skip to main content
Log in

Liquid–Vapor Phase Transitions for Systems with Finite-Range Interactions

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider particles in ℝd, d≥2, interacting via attractive pair and repulsive four-body potentials of the Kac type. Perturbing about mean-field theory, valid when the interaction range becomes infinite, we prove rigorously the existence of a liquid–gas phase transition when the interaction range is finite but long compared to the interparticle spacing for a range of temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic Press, London/New York, 1982).

    Google Scholar 

  2. J. Bricmont, K. Kuroda, and J. L. Lebowitz, First order phase transitions in lattice and continuous systems: Extension of Pirogov–Sinai theory, Comm. Math. Phys. 101:501–538 (1985).

    Google Scholar 

  3. T. Bodineau and E. Presutti, Phase diagram of Ising systems with additional long range forces, Comm. Math. Phys. 189:287–298, (1996).

    Google Scholar 

  4. A. Bovier and M. Zahradnik, The low temperature phase of Kac–Ising models, J. Stat. Phys., to appear.

  5. J. T. Chayes, L. Chayes, and R. Kotecky, The analysis of the Widom–Rowlinson model by stochastic geometric methods, Comm. Math. Phys. 172:551–569 (1995).

    Google Scholar 

  6. M. Cassandro, E. Olivieri, A. Pellegrinotti, and E. Presutti, Existence and unique ness of DLR measures for unbounded spin systems, Z. Wahr. verv. Geb. 41:313–334 (1978).

    Google Scholar 

  7. M. Cassandro and E. Presutti, Phase transitions in Ising systems with long but finite range interactions, Markov Processes and Related Fields 2:241–262 (1996).

    Google Scholar 

  8. R. L. Dobrushin, Existence of phase transition in two-and three-dimensional Ising models, Th. Prob. Appl. 10:193–313 (1965).

    Google Scholar 

  9. R. L. Dobrushin, Prescribing a system of random variables by conditional distributions, Th. Prob. Appl. 15:456–458 (1970).

    Google Scholar 

  10. R. L. Dobrushin, Estimates of semi-invariants for the Ising model at low tem peratures, topics in statistical and theoretical physics, Amer. Math. Soc. Transl. (2) 177:59–81 (1996).

    Google Scholar 

  11. E. I. Dinaburg and Ya. G. Sinai, Contour models with interaction and their applications, Sel. Math. Sov. 7:291–315 (1988).

    Google Scholar 

  12. R. L. Dobrushin and M. Zahradnik, Phase diagrams for continuous spin models. Extension of Pirogov–Sinai theory, in Mathematical Problems of Statistical Mechanics and Dynamics, R. L. Dobrushin, ed. (Kluwer Academic Publishers, Dordrecht, Boston, 1986), pp. 1–123.

    Google Scholar 

  13. M. V. Fedoryuk, Asymptotic: Integrals and Series (Nauka, Moscow, 1987).

    Google Scholar 

  14. B. U. Felderhof and M. E. Fisher, Phase transitions in one-dimensional cluster-interaction fluids. IA. Thermodynamics, IB. Critical behavior, II. Simple logarithmic model, Annals of Phys. 58:176–216, 217–267, 268–280 (1970).

    Google Scholar 

  15. H.-O. Georgii and Haggstrom, Phase transitions in continuum Potts models, Comm. Math. Phys. 181:507–528 (1996).

    Google Scholar 

  16. R. B. Griffiths, Peierls' proof of spontaneous magnetization in a two-dimensional Ising ferromagnet, Phys. Rev. A 136:437–439 (1964).

    Google Scholar 

  17. K. Johansson, On separation of phases in one-dimensional gases, Comm. Math. Phys. 169:521–561 (1995).

    Google Scholar 

  18. N. G. van Kampen, Condensation of a classical gas with long-range attraction, Phys. Rev. A 135:362 (1964).

    Google Scholar 

  19. R. Kotecky and D. Preiss, Cluster expansion for abstract polymer models, Comm. Math. Phys. 103:491–498 (1986).

    Google Scholar 

  20. M. Kac, G. Uhlenbeck, and P. C. Hemmer, On the Van der Waals theory of vapor–liquid equilibrium, J. Mat. Phys. 4:216–228, 229–247 (1963); 5:60–74 (1964).

    Google Scholar 

  21. J. L. Lebowitz and E. H. Lieb, Phase transition in a continuum classical system with finite interactions, Phys. Lett. A 39:98–100 (1972).

    Google Scholar 

  22. J. L. Lebowitz, A. E. Mazel, and E. Presutti, Rigorous proof of a liquid–vapor phase transition in a continuum particle system, Phys. Rev. Lett. 80:4701–4704 (1998).

    Google Scholar 

  23. J. L. Lebowitz, A. E. Mazel, and E. Presutti, in preparation.

  24. J. L. Lebowitz and O. Penrose, Rigorous treatment of the Van der Waals–Maxwell theory of the liquid–vapor transition, J. Mat. Phys. 7:98–113 (1966).

    Google Scholar 

  25. A. E. Mazel and Yu. M Suhov, Ground states of boson quantum lattice model, Amer. Math. Soc. Transl. (2) 171:185–226 (1996).

    Google Scholar 

  26. L. Onsager, Crystal statistics I. A two-dimensional model with an order–disorder transition, Phys. Rev. 65:117–149 (1944).

    Google Scholar 

  27. R. Peierls, On Ising's model of ferromagnetism, Proc. Camb. Phil. Soc. 32:477–481 (1936).

    Google Scholar 

  28. E. Presutti, Notes on phase transition in the continuum, Lectures at IHP, Paris, June–July 1998, preprint.

  29. S. A. Pirogov and Ya. G Sinai, Phase diagrams of classical lattice systems, Theor. Math. Phys. 25:358–369, 1185–1192 (1975).

    Google Scholar 

  30. D. Ruelle, Existence of a phase transition in a continuous classical system, Phys. Rev. Lett. 27:1040–1041 (1971).

    Google Scholar 

  31. D. Ruelle, Probability estimates for continuous spin systems, Comm. Math. Phys. 50:189–194 (1976).

    Google Scholar 

  32. Ya. G. Sinai, Theory of Phase Transitions (Academia Kiado and Pergamon Press, Budapest, London, 1982).

    Google Scholar 

  33. E. Seiler, Gauge theories as a problem of constructive quantum field theory and statistical mechanics, Lect. Notes in Physics, Vol. 159 (Springer-Verlag, Berlin, 1982).

    Google Scholar 

  34. B. Widom and J. S. Rowlinson, New model for the study of liquid–vapor phase transitions, J. Chem. Phys. 52:1670–1684 (1970).

    Google Scholar 

  35. M. Zahradnik, An alternate version of Pirogov–Sinai theory, Comm. Math. Phys. 93:559–581 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebowitz, J.L., Mazel, A. & Presutti, E. Liquid–Vapor Phase Transitions for Systems with Finite-Range Interactions. Journal of Statistical Physics 94, 955–1025 (1999). https://doi.org/10.1023/A:1004591218510

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004591218510

Navigation