Skip to main content
Log in

A Gallavotti–Cohen-Type Symmetry in the Large Deviation Functional for Stochastic Dynamics

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We extend the work of Kurchan on the Gallavotti–Cohen fluctuation theorem, which yields a symmetry property of the large deviation function, to general Markov processes. These include jump processes describing the evolution of stochastic lattice gases driven in the bulk or through particle reservoirs, general diffusive processes in physical and/or velocity space, as well as Hamiltonian systems with stochastic boundary conditions. For dynamics satisfying local detailed balance we establish a link between the average of the action functional in the fluctuation theorem and the macroscopic entropy production. This gives, in the linear regime, an alternative derivation of the Green–Kubo formula and the Onsager reciprocity relations. In the nonlinear regime consequences of the new symmetry are harder to come by and the large deviation functional difficult to compute. For the asymmetric simple exclusion process the latter is determined explicitly using the Bethe ansatz in the limit of large N.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. G. Bergmann and J. L. Lebowitz, New approach to nonequlibrium processes, Phys. Rev. 99:578 (1955).

    Google Scholar 

  2. J. L. Lebowitz and P. G. Bergmann, Irreversible Gibbsian ensembles, Ann. Phys. 1:1 (1957).

    Google Scholar 

  3. Z. Rieder, J. L. Lebowitz, and E. Lieb, Properties of a harmonic crystal in a stationary nonequilibrium state, J. Math. Phys. 8:1073 (1967).

    Google Scholar 

  4. A. J. O'Conner and J. L. Lebowitz, Heat conduction and sound transmission in isotopically disordered harmonic crystals, Journ. Math. Phys. 15:629 (1974).

    Google Scholar 

  5. S. Goldstein, J. L. Lebowitz, and E. Presutti, Mechanical system with stochastic boundaries, in Random Fields, Vol. I, J. Fritz, J. L. Lebowitz, and D. Szász, eds. (North-Holland, Amsterdam, 1979).

    Google Scholar 

  6. J. L. Lebowitz, Exact results in nonequilibrium statistical mechanics: Where do we stand?, Prog. Theor. Physics, Supplement 64:35 (1978).

    Google Scholar 

  7. S. Goldstein, C. Kipnis, and N. Ianiro, Stationary states for a mechanical system with stochastic boundary conditions, J. Stat. Phys. 41:915 (1985).

    Google Scholar 

  8. H. Spohn, and J. L. Lebowitz, Stationary nonequilibrium states of infinite harmonic systems, Comm. Math. Phys. 54:97 (1977).

    Google Scholar 

  9. S. Goldstein, J. L. Lebowitz, and K. Ravishankar, Approach to equilibrium in models of a system in contact with a heat bath, J. Stat. Phys. 43:303 (1986).

    Google Scholar 

  10. J.-P. Eckmann, C.-A. Pillet, and L. Rey-Bellet, Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures, preprint 1998, Texas Archive for Mathematical Physics.

  11. S. Katz, J. L. Lebowitz, and H. Spohn, Stationary nonequilibrium states for stochastic lattice gas models of ionic superconductors, J. Stat. Phys. 34:497 (1984).

    Google Scholar 

  12. H. Spohn, Long range correlations for stochastic lattice gases in a nonequilibrium steady state, J. Phys. A 16:4275 (1983).

    Google Scholar 

  13. G. Eyink, J. L. Lebowitz, and H. Spohn, Microscopic origin of hydrodynamic behavior: Entropy production and the steady state, in Chaos, Soviet-American Perspectives in Non-linear Science, Hg. D. K Campbell, (American Institute of Physics, 1990), p. 367.

  14. G. Eyink, J. L. Lebowitz, and H. Spohn, Hydrodynamics, fluctuations, and large deviations outside local equilibrium, J. Stat. Phys. 83:385 (1996).

    Google Scholar 

  15. W.G. Hoover, Molecular Dynamics, Lecture Notes in Physics, Vol. 258 (Springer, Heidelberg, 1986).

    Google Scholar 

  16. D. J. Evans and G. P. Morriss, Statistical Mechanics of Nonequilibrium Fluids (Academic Press, London, 1990).

    Google Scholar 

  17. N. J. Chernov, G. L. Eyink, J. L. Lebowitz, and Ya. G. Sinai, Derivation of Ohm's law in a determinisitic mechanical model, Phys. Rev. Lett. 70:2209 (1993).

    Google Scholar 

  18. N. J. Chernov, G. L. Eyink, J. L. Lebowitz, and Ya. G. Sinai, Steady-state electrical conduction in the periodic Lorentz gas, Comm. Math. Phys. 154:569 (1993).

    Google Scholar 

  19. D. Ruelle, Positivity of entropy production in nonequilibrium statistical mechanics, J. Stat. Phys. 85:1 (1996).

    Google Scholar 

  20. G. Gallavotti, Chaotic dynamics, fluctuations, non-equilibrium ensembles, Chaos 8:384 (1998).

    Google Scholar 

  21. D. Ruelle, New theoretical ideas in nonequilibrum statistical mechanics, Lecture Notes (Rutgers University, fall 1997).

  22. G. Gallavotti, and E. G. D. Cohen, Dynamical ensembles in stationary states, J. Stat. Phys. 80:931 (1995).

    Google Scholar 

  23. D. J. Evans, E. G. D. Cohen, and G. P. Morriss, Probability of second law violations in steady flows, Phys. Rev. Lett. 71:2401 (1993).

    Google Scholar 

  24. G. Gallavotti, Extension of Onsager's reciprocity to large fields and the chaotic hypothesis, Phys. Rev. Lett. 77:4334 (1996).

    Google Scholar 

  25. G. Gallavotti, New methods in nonequilibrium gases and fluids, Proceedings of the conference “Let's face chaos through nonlinear dynamics”, University of Maribor, 24 june-5 july 1996, M. Robnik, ed. Open Systems and Information Dynamics, Vol. 5, 1998, to be published. Archived as: chao-dyn 9610018.

  26. D. J. Evans and D. J. Searles, Equilibrium microstates which generate second law violating steady states, Phys. Rev. E 50:1645 (1994).

    Google Scholar 

  27. J. Kurchan, Fluctuation theorem for stochastic dynamics, J. Phys. A.: Math. Gen. 31:3719 (1998).

    Google Scholar 

  28. F. Bonetto, G. Gallavotti, and P. Garrido, Chaotic principle: an experimental test, Physica D 105:226 (1997).

    Google Scholar 

  29. C. Maes, The fluctuation theorem as a Gibbs property, preprint, 1998.

  30. S. R. S. Varadhan, Large Deviations and Applications (SIAM, Philadelphia, 1984).

    Google Scholar 

  31. J.-D. Deuschel and D. W. Strook, Large Deviations (Academic Press, San Diego, 1989).

    Google Scholar 

  32. H. Spohn, Large Scale Dynamics of Interacting Particles (Springer, Heidelberg, 1991).

    Google Scholar 

  33. D. Stroock and S. R. S. Varadhan, Multidimensional Diffusion Processes (Springer, Berlin, 1979).

    Google Scholar 

  34. M. Büttiker, Transport as a consequence of state-dependent diffusion, Z. Physik 68:161 (1987).

    Google Scholar 

  35. Ya. M. Blanter and M. Büttiker, Rectification of fluctuations in an underdamped ratchet, preprint 1998.

  36. J.-P. Eckmann, C.-A. Pillet, and L. Rey-Bellet, Entropy production in non-linear, thermally driven Hamiltonian systems, J. Stat. Phys., to appear; Nonequilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures, Commun. Math. Phys., to appear.

  37. B. L. Holian, W. G. Hoover, and H. A. Posch, Resolution of Loschmidt's paradox: The origin of irreversible behavior in reversible atomistic dynamics, Phys. Rev. Lett. 59:10 (1987).

    Google Scholar 

  38. H. A. Posch and W. G. Hoover, Non equilibrium molecular dynamics of a classical fluid, in Molecular Liquids: New Perspectives in Physics and Chemistry, J. Teixeira-Dias, ed. (Kluwer Academic Publishers, 1992), p. 527.

  39. G. Gallavotti, Chaotic hypothesis: Onsager reciprocity and fluctuation dissipation theorem, J. Stat. Phys. 84:899 (1996).

    Google Scholar 

  40. S. Lipri, R. Livi, and A. Politi, Energy transport in anharmonic lattice close and far from equilibrium, preprint, archived in xxx.lanl.gov.cond-mat #9709195.

  41. N. I. Chernov and J. L. Lebowitz, Stationary nonequilibrium states in boundary-driven Hamiltonian systems: Shear flow, J. Stat. Phys. 86:953 (1997).

    Google Scholar 

  42. F. Bonetto, N. I. Chernov, and J. L. Lebowitz, (Global and local) fluctuations of phase space contraction in deterministic stationary non-equilibrium, Chaos 8:823–833 (1998).

    Google Scholar 

  43. F. Bonetto and J. L. Lebowitz (work in progress).

  44. G. Gallavotti and D. Ruelle, SNOB states and nonequilibrium statistical mechanics close to equilibrium, Comm. Math. Phys. 190:279 (1997).

    Google Scholar 

  45. D. Ruelle, Differentiation of SRB states, Comm. Math. Phys. 187:227 (1997).

    Google Scholar 

  46. B. Suthertand, C. N. Yang, and C. P. Yang, Exact solution of a model of two-dimensional ferroelectric in an arbitrary external electric field, Phys. Rev. Lett. 19:588 (1967).

    Google Scholar 

  47. D. Kim, Bethe ansatz solution for crossover scaling functions of the asymmetric XXZ chain and the KPZ-type growth model, Phys. Rev. E 52:3512 (1995).

    Google Scholar 

  48. B. Derrida and J. L. Lebowitz, Exact large deviation function in the asymmetric exclusion process, Phys. Rev. Lett. 80:209 (1998).

    Google Scholar 

  49. B. Derrida and C. Appert, Universal large deviation function of the Kardar-Parisi-Zhang equation in one dimension, preprint, 1998.

  50. H. van Beijeren, R. Kutner, and H. Spohn, Excess noise for driven diffusive systems, Phys. Rev. Lett. 54:2026 (1985).

    Google Scholar 

  51. H. van Beijeren, Transport properties of stochastic Lorentz models, Rev. Mod. Phys. 54:195 (1982).

    Google Scholar 

  52. C. N. Yang and C. P. Yang, Ground state energy of a Heisenberg-Ising lattice, Phys. Rev. 147:303 (1966).

    Google Scholar 

  53. G. Gallavotti, Fluctuation patterns and conditional reversibility in nonequilibrium systems, Ann. Institut H. Poincaré, in print, and chao-dyn@xyz.lanl.gov #9703007.

  54. G. Gallavotti, private communication.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebowitz, J.L., Spohn, H. A Gallavotti–Cohen-Type Symmetry in the Large Deviation Functional for Stochastic Dynamics. Journal of Statistical Physics 95, 333–365 (1999). https://doi.org/10.1023/A:1004589714161

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004589714161

Navigation