Skip to main content
Log in

The Genealogical Tree of a Chromosome

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider a simple neutral model to describe the genealogy of chromosomes by taking into account the effects of both recombination and coalescence. Seen as a statistical physics problem, the model looks like an inverse problem: A number of properties such as pair or three-point correlations can be computed easily, but the prediction of global properties, in particular the average number of ancestors, remains difficult. In the absence of exact solutions, these global properties can nevertheless be estimated by the usual approximations: series expansions, Monte Carlo simulations, mean-field theory. Simulations exhibit also non-self-averaging properties similar to those of mean-field spin glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. L. Cann, M. Stoneking, and A. C. Wilson, Mitochondrial DNA and human evolution, Nature 325:31 (1987).

    Google Scholar 

  2. R. Hudson, Gene genealogies and the coalescent process, Oxford Surveys in Evolutionnary Biology, Vol. 7, p. 1, D. Futuyma and J. Antonovics, eds. (Oxford University Press, 1991).

  3. P. Donnelly and S. Tavaré, Coalescents and genealogical structure under neutrality, Annu. Rev. Genet. 29:401 (1995).

    Google Scholar 

  4. J. F. Kingman, The coalescent, Stoch. Proc. Appl. 13:235 (1982).

    Google Scholar 

  5. R. Hudson, Properties of a neutral allel model with intragenic recombination, Theor. Pop. Biol. 23:183 (1983).

    Google Scholar 

  6. C. Wiuf and J. Hein, On the number of ancestors to a DNA sequence, Genetics 147:1459 (1997).

    Google Scholar 

  7. M. Mézard, G. Parisi, N. Sourlas, G. Toulouse, and M. Virasoro, Replica symmetry breaking and the nature of the spin glass phase, J. Physique 45:843 (1984).

    Google Scholar 

  8. M. Mézard, G. Parisi, and M. Virasoro, Spin Glass Theory and Beyond (World Scientific, 1987).

  9. B. Derrida and H. Flyvbjerg, Statistical properties of randomly broken objects and of multivalley structures in disordered systems, J. Phys. A 20:5273 (1987).

    Google Scholar 

  10. B. Derrida, From random walks to spin glasses, Physica D 107:186 (1997).

    Google Scholar 

  11. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972).

    Google Scholar 

  12. B. Derrida and L. Peliti, Evolution in a flat fitness landscape, Bull. Math. Biol. 53:355 (1990).

    Google Scholar 

  13. P. G. Higgs, Frequency distributions in population genetics parallel those in statistical physics, Phys. Rev. E 51:95 (1995).

    Google Scholar 

  14. L. Frachebourg, I. Ispolatov, and P. L. Krapivsky, Extremal properties of random systems, Phys. Rev. E 52:R5727 (1995).

    Google Scholar 

  15. M. S. McPeek and T. P Speed, Modeling interference in genetic recombination, Genetics 139:1031 (1995).

    Google Scholar 

  16. G. S Roeder, Sex and the single cell, Proc. Natl. Acad. Sci. USA 92:10450 (1995).

    Google Scholar 

  17. S. Ohno, The Maltusian parameter of ascents: what prevents the exponential increase of one's ancestors? Proc. Natl. Acad. Sci. USA 93:15276 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Derrida, B., Jung-Muller, B. The Genealogical Tree of a Chromosome. Journal of Statistical Physics 94, 277–298 (1999). https://doi.org/10.1023/A:1004579800589

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004579800589

Navigation