Skip to main content
Log in

Generalized von Smoluchowski Model of Reaction Rates, with Reacting Particles and a Mobile Trap

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study diffusion-limited coalescence, A+AA, in one dimension, in the presence of a diffusing trap. The system may be regarded as a generalization of von Smoluchowski's model for reaction rates, in that (a) it includes reactions between the particles surrounding the trap, and (b) the trap is mobile—two considerations which render the model more physically relevant. As seen from the trap's frame of reference, the motion of the particles is highly correlated, because of the motion of the trap. An exact description of the long-time asymptotic limit is found using the IPDF method and exploiting a “shielding” property of reversible coalescence that was discovered recently. In the case where the trap also acts as a sources—giving birth to particles—the shielding property breaks down, but we find an “equivalence principle”: Trapping and diffusion of the trap may be compensated by an appropriate rate of birth, such that the steady state of the system is identical with the equilibrium state in the absence of a trap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1981).

    Google Scholar 

  2. H. Haken, Synergetics (Springer-Verlag, Berlin, 1978).

    Google Scholar 

  3. G. Nicolis and I. Prigogine, Self-Organization in Non-Equilibrium Systems (Wiley, New York, 1980).

    Google Scholar 

  4. T. M. Liggett, Interacting Particle Systems (Springer-Verlag, New York, 1985).

    Google Scholar 

  5. K. Kang and S. Redner, Fluctuation-dominated kinetics in diffusion-controlled reactions, Phys. Rev. A 32:435 (1985); V. Kuzovkov and E. Kotomin, Kinetics of bimolecular reactions in condensed media: critical phenomena and microscopic self-organization, Rep. Prog. Phys. 51:1479 (1988).

    Google Scholar 

  6. J. Stat. Phys. Vol. 65, Nos. 5/6 (1991); this issue contains the proceedings of a conference on Models of Non-Classical Reaction Rates, which was held at NIH (March 25-27, 1991) in honor of the 60th birthday of G. H. Weiss.

    Google Scholar 

  7. K. J. Laidler, Chemical Kinetics (McGraw-Hill, New York, 1965).

    Google Scholar 

  8. S. W. Benson, The Foundations of Chemical Kinetics (McGraw-Hill, New York, 1960).

    Google Scholar 

  9. M. von Smoluchowski, Z. Phys. Chem. 92:129 (1917).

    Google Scholar 

  10. R. Schoonover, D. ben-Avraham, S. Havlin, R. Kopelman, and G. H. Weiss, Nearest-neighbor distances in diffusion-controlled reactions modelled by a single mobile trap, Physica A 171:232 (1991).

    Google Scholar 

  11. D. ben-Avraham and G. H. Weiss, Statistical properties of nearest-neighbor distances in a diffusion-reaction model, Phys. Rev. A 39:6436 (1989).

    Google Scholar 

  12. A. D. Sánchez, M. A. Rodriguez, and H. S. Wio, Results in trapping reactions for mobile particles and a single trap, Phys. Rev. E 57:6390 (1998).

    Google Scholar 

  13. D. ben-Avraham, M. A. Burschka, and C. R. Doering, Statics and dynamics of a diffusion-limited reaction: Anomalous kinetics, nonequilibrium self-ordering, and a dynamic transition, J. Stat. Phys. 60:695 (1990).

    Google Scholar 

  14. C. R. Doering, Microscopic spatial correlations induced by external noise in a reaction-diffusion system, Physica A 188:386 (1992).

    Google Scholar 

  15. H. Hinrichsen, K. Krebs, and M. P. Pfannmuller, Finite-size scaling of one-dimensional reaction-diffusion systems. Part I: Analytic results, J. Stat. Phys. 78:1429 (1995); B. Wehefritz, K. Krebs, and M. P. Pfannmüller, Finite-size scaling of one-dimensional reaction-diffusion systems. Part II: Numerical methods, J. Stat. Phys. 78:1471 (1995); H. Hinrichsen, K. Krebs, and I. Peschel, Solution of a one-dimensional reaction-diffusion model with spatial asymmetry, Z. Phys. B 100:105 (1996).

    Google Scholar 

  16. M. Henkel, E. Orlandini, and G. M. Schütz, Equivalence between stochastic systems, J. Phys. A 28:6335 (1995); M. Henkel, E. Orlandini, and J. Santos, Reaction-diffusion processes from equivalent integrable quantum chains, Ann. Phys. (N.Y.) 259:163 (1997).

    Google Scholar 

  17. H. Simon, Concentration for one and two species one-dimensional reaction-diffusion systems, J. Phys. A 28:6585 (1995).

    Google Scholar 

  18. D. Balboni, P.-A. Rey, and M. Droz, Universality of a class of annihilation-coagulation models, Phys. Rev. E 52:6220 (1995); P.-A. Rey and M. Droz, A renormalization group study of reaction-diffusion models with particles input, J. Phys. A 30:1101 (1997).

    Google Scholar 

  19. M. Bramson and D. Griffeath, Clustering and dispersion for interacting particles, Ann. Prob. 8:183 (1980); Z. Wahrsch. Geb. 53:183 (1980).

    Google Scholar 

  20. D. C. Torney and H. M. McConnell, Diffusion-limited reactions in one dimension, Proc. R. Soc. Lond. A 387:147 (1983).

    Google Scholar 

  21. J. L. Spouge, Exact solutions for a diffusion-reaction process in one dimension, Phys. Rev. Lett. 60:871 (1988).

    Google Scholar 

  22. H. Takayasu, I. Nishikawa and H. Tasaki, Phys. Rev. A 37:3110 (1988).

    Google Scholar 

  23. V. Privman, Exact results for diffusion-limited reactions with synchronous dynamics, Phys. Rev. E 50:50 (1994); Exact results for 1D conserved order parameter model, Mod. Phys. Lett. B 8:143 (1994); V. Privman, A. M. R. Cadilhe, and M. L. Glasser, Exact solutions of anisotropic diffusion-limited reactions with coagulation and annihilation, J. Stat. Phys. 81:881 (1995); Anisotropic diffusion-limited reactions with coagulation and annihilation, Phys. Rev. E 53:739 (1996).

    Google Scholar 

  24. D. ben-Avraham, Diffusion-limited coalescence, A + AA, with a trap, Phys. Rev. E 58:4351 (1998); D. ben-Avraham, Inhomogeneous steady-states of diffusion-limited coalescence, A + AA, Phys. Lett. A 249:415 (1998).

    Google Scholar 

  25. D. ben-Avraham, The method of interparticle distribution functions for diffusion-reaction systems in one dimension, Mod. Phys. Lett. B 9:895 (1995); D. ben-Avraham, The coalescence process, A + AA, and the method of interparticle distribution functions, in Nonequilibrium Statistical Mechanics in One Dimension, V. Privman, ed., pp. 29-50 (Cambridge University Press, 1997).

    Google Scholar 

  26. D. ben-Avraham, Fisher waves in the diffusion-limited coalescence process A + AA, Phys. Lett. A 247:53 (1998).

    Google Scholar 

  27. D. R. Nelson and N. Shnerb, Non-hermitian localization and population biology, Phys. Rev. E 58:1383 (1998).

    Google Scholar 

  28. K. A. Dahmen, D. R. Nelson, and N. M. Shnerb, Life and death near a windy oasis, http://xxx.lanl.gov/list/cond-mat, paper number 9807394. 112 Donev et al.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donev, A., Rockwell, J. & ben-Avraham, D. Generalized von Smoluchowski Model of Reaction Rates, with Reacting Particles and a Mobile Trap. Journal of Statistical Physics 95, 97–112 (1999). https://doi.org/10.1023/A:1004573310526

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004573310526

Navigation