Skip to main content
Log in

Polymer Gas Approach to N-Body Lattice Systems

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We give a simple proof, based only on combinatorial arguments, of the Kotecký–Preiss condition for the convergence of the cluster expansion. Then we consider spin systems with long-range N-body interactions. We prove directly, using the polymer gas representation, that the pressure may be written in terms of an absolutely convergent series uniformly in the volume when the interaction is summable in a suitable sense. We also give an estimate of this radius of convergence. In order to get the proof we use a method introduced by Cassandro and Olivieri in the early 1980s. We apply this method to various concrete examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. A. Battle, P. Federbush, A note on cluster expansion, tree graph identity, extra 1/N! factors!!!, Lett. Math. Phys. 8:55–97 (1984).

    Google Scholar 

  2. D. Brydges, A Short Course on Cluster Expansion, Les Houches 1984, K. Osterwalder and R. Stora, eds. (North Holland Press, 1986).

  3. D. Brydges and P. Federbush, A new form of the Mayer expansion in classical statistical mechanics,J. Math. Phys. 19:2064–2067 (1978).

    Google Scholar 

  4. C. Cammarota, Decay of Correlations for Infinite range Interactions in unbounded Spin Systems, Comm. Math Phys. 85:517–528 (1982).

    Google Scholar 

  5. M. Cassandro and E. Olivieri, Renormalization group and analiticity in one dimension: a proof of Dobrushin's theorem, Comm. Math Phys. 80:255–269 (1981).

    Google Scholar 

  6. R. L. Dobrushin and M. R. Martirosyan, Possibility of high temperature phase transitions due to the many-particle nature of the potential, Theor. Math. Phys. 75:443–448 (1989).

    Google Scholar 

  7. A. C. D. van Enter and R. Fernandez, A remark on different norms and analticity for many-particle interactions, J. Stat. Phys. 56:965–973 (1989).

    Google Scholar 

  8. J. Glimm and A. Jaffe, Quantum Physics, A Functional Integral Point of View, 2nd ed. (Springer, New York, 1987).

    Google Scholar 

  9. G. Gallavotti and S. Miracle-Solé, Correlation functions for lattice systems, Comm. Math Phys. 7:274–288 (1968).

    Google Scholar 

  10. G. Gallavotti, A. Martin-Loöf, and S. Miracle-Solé, Some problems connected with the description of cohexistings phases at low temperature in the Ising model. In Lecture Notes in Physics, Vol. 20 (Berlin–Heidelberg–New York, Springer, 1971), pp. 162–202.

    Google Scholar 

  11. G. Gallavotti, S. Miracle-Solé, and D. W. Robinson, Analiticity properties of a lattice gas, Phys. Lett. 25A:493–494 (1967).

    Google Scholar 

  12. C. Gruber and H. Kunz, General properties of polymer systems, Comm. Math Phys. 22:133–161 (1971).

    Google Scholar 

  13. R. Kotecký and D. Preiss, Cluster expansion for abstract polymer models, Comm. Math Phys. 103:491–498 (1986).

    Google Scholar 

  14. H. Kunz, Analiticity and cluster properties of unbounded spin systems, Comm. Math Phys. 59:53–69 (1978).

    Google Scholar 

  15. R. B. Israel, High temperature analiticity in classical lattice systems, Comm. Math Phys. 50:245–257 (1976).

    Google Scholar 

  16. V. A. Malyshev, Uniform cluster estimates for lattice models, Comm. Math Phys. 64:131–157 (1979).

    Google Scholar 

  17. F. R. Nardi, E. Olivieri, and M. Zahradník, On the Ising model with strongly anysotropic external fields, Preprint.

  18. E. Olivieri, On a cluster expansion for lattice spin systems: a finite size condition for the convergence, J. Stat. Phys. 50(5–6) (1988).

  19. A. Procacci, B. N. B. de Lima, B. Scoppola, A remark on high temperature polymer expansion for lattice systems with infinite range pair interactions, Lett. Math. Phys. 45:303–322 (1998).

    Google Scholar 

  20. D. Ruelle, Statistical Mechanics, Rigorous Results (W. A. Benjamin, New York, 1969).

    Google Scholar 

  21. G. C Rota, On the foundations of the combinatorial theory. I Theory of Mœbius functions, Z. Wahrscheinlichkeitstheorie Verw. Gebiete 2:340–368 (1964).

    Google Scholar 

  22. A. L. Rebenko and G. V. Shchepan'uk, The Convergence of Cluster Expansion for Continuous Systems with Many-Body Interactions, J. Stat. Phys. 88:665–689 (1997).

    Google Scholar 

  23. E. Seiler, Gauge Theories as a Problem of Constructive Quantum Field Theory and Statistical Mechanics, Lecture Notes in Physics, Vol. 159 (Springer, New York, 1982).

    Google Scholar 

  24. B. Simon, The Statistical Mechanics of Lattice Gases, Vol. 1 (Princeton University Press, 1993).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Procacci, A., Scoppola, B. Polymer Gas Approach to N-Body Lattice Systems. Journal of Statistical Physics 96, 49–68 (1999). https://doi.org/10.1023/A:1004564214528

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004564214528

Navigation