Skip to main content
Log in

Analytical and Numerical Studies of the One-Dimensional Spin Facilitated Kinetic Ising Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The one-dimensional spin facilitated kinetic Ising model is studied analytically using the master equation and by simulations. The local state of the spins (corresponding to mobile and immobile cells) can change depending on the state of the neighbored spins, which reflects the high cooperativity inherent in glassy materials. The short-time behavior is analyzed using a Fock space representation for the master equation. The hierarchy of evolution equations for the averaged spin state and the time dependence of the spin autocorrelation function are calculated with different methods (mean-field theory, expansion in powers of the time, partial summation) and compared with numerical simulations. The long-time behavior can be obtained by mapping the one-dimensional spin facilitated kinetic Ising model onto a one-dimensional diffusion model containing birth and death processes. The resulting master equation is solved by van Kampen's size expansion, which leads to a Langevin equation with Gaussian noise. The predicted autocorrelation function and the global memory offer in the long-time limit a screened algebraic decay and a stretched exponential decay, respectively, consistent with numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. W. Götze in Liquids, Freezing and the Glass Transition, Hansen et al., eds. (North Holland, Amsterdam, 1991).

    Google Scholar 

  2. W. Götze and L. Sjögren, Rep. Prog. Phys. 55:241 (1992).

    Google Scholar 

  3. J. Jäckle, Rep. Prog. Phys. 49:171 (1986).

    Google Scholar 

  4. E. Leutheusser, Phys. Rev. A 29:2765 (1984).

    Google Scholar 

  5. G. Adams and J. H. Gibbs, J. Chem. Phys. 43:139 (1965).

    Google Scholar 

  6. M. L. Williams, R. F. Landel, and J. D. Ferry, J. Am. Chem. Soc. 77:3701 (1955).

    Google Scholar 

  7. W. Götze and L. Sjögren, Zeitschrift für Physik B Cond. Matter 65:415 (1987).

    Google Scholar 

  8. W. Götze and L. Sjögren, J. Phys. C 21:3407 (1988).

    Google Scholar 

  9. T. Franosch, W. Götze, M. R. Mayr, and A. P. Singh, Phys. Rev. E 55:3183 (1997).

    Google Scholar 

  10. T. Franosch, M. Fuchs, W. Götze, M. R. Mayr, and A. P. Singh, Phys. Rev. E 55:7153 (1997).

    Google Scholar 

  11. G. H. Fredrickson and H. C. Andersen, J. Chem. Phys. 84:5822 (1985).

    Google Scholar 

  12. G. H. Fredrickson and H. C. Andersen, Phys. Rev. Lett. 53:1244 (1984).

    Google Scholar 

  13. G. H. Fredrickson, Ann. Rev. Phys. Chem. 39:149 (1988).

    Google Scholar 

  14. G. H. Fredrickson and S. A. Brawer, J. Chem. Phys. 84:3351 (1986).

    Google Scholar 

  15. M. Schulz and P. Reinecker, Phys. Rev. B 48:9369 (1993).

    Google Scholar 

  16. M. Schulz and P. Reinecker, Phys. Rev. B 52:4131 (1995).

    Google Scholar 

  17. M. Schulz, P. R. S. Sharma, and H. L. Frisch, Phys. Rev. B 52:7195 (1995).

    Google Scholar 

  18. S. Butler and P. Harrowell, J. Chem. Phys. 95:4454 (1991).

    Google Scholar 

  19. M. Schulz and S. Trimper, Int. J. Mod. Phys. B 11:2927 (1997).

    Google Scholar 

  20. J. Doi, Phys. A: Math. Gen. 9:1465 (1976).

    Google Scholar 

  21. S. Sandow and S. Trimper, Europhys. Lett. 21:799 (1993).

    Google Scholar 

  22. P. Grassberger and M. Scheunert, Fortschr. Physik 28:547 (1980).

    Google Scholar 

  23. L. Peliti, J. Physique 46:1469 (1985).

    Google Scholar 

  24. G. Schülz and S. Sandow, Phys. Rev. E 49:2726 (1994).

    Google Scholar 

  25. L. H. Gwa and H. Spohn, Phys. Rev. Lett. 68:725 (1992).

    Google Scholar 

  26. F. C. Alcarez, M. Droz, M. Henkel, and V. Rittenberg, Ann. Phys. (N.Y.) 230:250 (1994).

    Google Scholar 

  27. M. Schulz and S. Trimper, Phys. Lett. A 216:235 (1996).

    Google Scholar 

  28. N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1986).

    Google Scholar 

  29. C. W. Gardiner, Handbook of Stochastic methods (Springer-Verlag, Berlin, 1983).

    Google Scholar 

  30. R. Richert, Chem. Phys. Lett. 216:223 (1993).

    Google Scholar 

  31. R. Böhmer, G. Hinze, G. Diezemann, B. Geil, and H. Sillescu, Europhys. Lett. 36:55 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schulz, M., Trimper, S. Analytical and Numerical Studies of the One-Dimensional Spin Facilitated Kinetic Ising Model. Journal of Statistical Physics 94, 173–201 (1999). https://doi.org/10.1023/A:1004563329723

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004563329723

Navigation