Skip to main content
Log in

Algebraic Rate of Decay for the Excess Free Energy and Stability of Fronts for a Nonlocal Phase Kinetics Equation with a Conservation Law. I

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

This is the first of two papers devoted to the study of a nonlocal evolution equation that describes the evolution of the local magnetization in a continuum limit of an Ising spin system with Kawasaki dynamics and Kac potentials. We consider subcritical temperatures, for which there are two local equilibria, and begin the proof of a local nonlinear stability result for the minimum free energy profiles for the magnetization at the interface between regions of these two different local equilibria; i.e., the fronts. We shall show in the second paper that an initial perturbation v 0 of a front that is sufficiently small in L 2 norm, and sufficiently localized that ∫ x 2 v 0(x)2 dx<∞, yields a solution that relaxes to another front, selected by a conservation law, in the L 1 norm at an algebraic rate that we explicitly estimate. There we also obtain rates for the relaxation in the L 2 norm and the rate of decrease of the excess free energy. Here we prove a number of estimates essential for this result. Moreover, the estimates proved here suffice to establish the main result in an important special case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. Alikakos, P. W. Bates, and X. Chen, Convergence of the Cahn–Hilliard equation to the Hele–Shaw model, Arch. Rat. Mech. Anal. 128:165–205 (1994).

    Google Scholar 

  2. A. Asselah, Stability of a wave front for a nonlocal conservative evolution, Proc. Royal Soc. Edinburgh 128A:219–234 (1998).

    Google Scholar 

  3. K. Kawasaki, Diffusion constants near the critical point for time-dependent Ising models. I. Phys. Rev. 145:224–230 (1966).

    Google Scholar 

  4. J. Bricmont, A. Kupiainen, and J. Taskinen, Stability of Cahn–Hilliard fronts, Comm. Pure H Appl. Math. 52:839–871 (1999).

    Google Scholar 

  5. E. A. Carlen, M. C. Carvalho, and E. Orlandi, Free energy inequalities and the rate of relaxation to instanton for interfaces profiles in Glauber dynamics, Nonlinear Differ. Equ. Appl. 5:205–218 (1998).

    Google Scholar 

  6. E. A. Carlen, M. C. Carvalho, and E. Orlandi, Algebraic rate of decay for the excess free energy and stability of fronts for a non-local phase kinetics equation with a conservation law II, to appear in Comm. P.D.E.

  7. E. A. Carlen, M. C. Carvalho, and E. Orlandi, Existence, uniqueness and regularity properties for a non-local phase kinetics equation with a conservation law, preprint (1998).

  8. X. Chen, Global asymptotic limit of solutions of the Cahn–Hilliard Equation, J. Diff. Geom. 44(2):262–311 (1996).

    Google Scholar 

  9. R. Dal Passo and P. de Mottoni, The heat equation with a nonlocal density dependent advection term, preprint (1991).

  10. A. De Masi, T. Gobron, and E. Presutti, Travelling fronts in non local evolution equations, Arch. Rat. Mech. Anal. 132:143–205 (1995).

    Google Scholar 

  11. A. De Masi, E. Orlandi, E. Presutti, and L. Triolo, Motion by curvature by scaling non local evolution equations, J. Stat. Phys. 73:543–570 (1993).

    Google Scholar 

  12. A. De Masi, E. Orlandi, E. Presutti, and L. Triolo, Glauber evolution with Kac potentials I. Mesoscopic and macroscopic limits, interface dynamics, Nonlinearity 7:633–696 (1994).

    Google Scholar 

  13. A. De Masi, E. Orlandi, E. Presutti, and L. Triolo, Stability of the interface in a model of phase separation, Proc. Royal Soc. Edinburgh 124A:1013–1022 (1994).

    Google Scholar 

  14. A. De Masi, E. Orlandi, E. Presutti, and L. Triolo, Uniqueness of the instanton profile and global stability in non local evolution equations, Rendiconti di Matematica. Serie VII, 14 (1994).

  15. G. Giacomin and J. Lebowitz, Phase segregation dynamics in particle systems with long range interactions I: Macroscopic limits, J. Stat. Phys. 87:37–61 (1997).

    Google Scholar 

  16. G. Giacomin and J. Lebowitz, Phase segregation dynamics in particle systems with long range interactions II: Interface motions, SIAM J. Appl. Math. 58:1707–1729 (1998).

    Google Scholar 

  17. R. Glauber, Time-dependent statistics of the Ising model, J. Math. Phys. 4:294–307 (1963).

    Google Scholar 

  18. G. Hardy, J. Littlewood, and G. Polya, Inequalities (Cambridge University Press, Cambridge, 1932).

    Google Scholar 

  19. M. A. Katsoulakis and P. E. Souganidis, Generalized motion by mean curvature as a macroscopic limit of stochastic Ising models with long range interaction and Glauber dynamics, Comm. Math. Phys. 169:61–97 (1995).

    Google Scholar 

  20. J. L. Lebowitz, E. Orlandi, and E. Presutti, A particle model for spinodal decomposition, J. Stat. Phys. 63:933–974 (1991).

    Google Scholar 

  21. R. L. Pego, Front migration in the nonlinear Cahn–Hilliard equation, Proc. R. Soc. Lond. A 422:261–278 (1989).

    Google Scholar 

  22. H. Weyl, Grüppentheorie and Quantenmechanik, Wissenschaftlich Verlag, Leipzig (1926).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

on leave from

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carlen, E.A., Carvalho, M.C. & Orlandi, E. Algebraic Rate of Decay for the Excess Free Energy and Stability of Fronts for a Nonlocal Phase Kinetics Equation with a Conservation Law. I. Journal of Statistical Physics 95, 1069–1117 (1999). https://doi.org/10.1023/A:1004562719554

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004562719554

Navigation