Skip to main content
Log in

Wetting of Alkanes on Water from a Cahn-Type Theory: Effects of Long-Range Forces

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We apply the phenomenological wetting theory of Cahn to fluids with van der Waals forces, and in particular to the wetting of pentane on water. Taking into account explicitly the long-range substrate–adsorbate interaction allows us to reproduce the experimentally observed critical wetting transition, which arises from the vanishing of the Hamaker constant at T≈53°C. This transition is preceded by a first-order transition between a thin and a thick film at a (much) lower temperature. If long-range forces are neglected, this thin–thick transition is the only wetting transition and critical wetting is missed. Our study focuses on the development of useful theoretical tools, such as phase portraits and interface potentials adapted to systems with van der Waals forces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. W. Cahn, J. Chem. Phys. 66:3667 (1977).

    Google Scholar 

  2. K. Ragil, J. Meunier, D. Broseta, J. O. Indekeu, and D. Bonn, Phys. Rev. Lett. 77:1532 (1996).

    Google Scholar 

  3. N. Shahidzadeh, D. Bonn, K. Ragil, D. Broseta, and J. Meunier, Phys. Rev. Lett. 80:3992 (1998).

    Google Scholar 

  4. K. Ragil, D. Bonn, D. Broseta, J. O. Indekeu, F. Kalaydjian, and J. Meunier, J. Petroleum Sci. Eng. 20:177 (1998).

    Google Scholar 

  5. K. Ragil, D. Bonn, D. Broseta, and J. Meunier, J. Chem. Phys. 105:5160 (1996).

    Google Scholar 

  6. J. O. Indekeu, P. J. Upton, and J. M. Yeomans, Phys. Rev. Lett. 61:2221 (1988); P. J. Upton, J. O. Indekeu, and J. M. Yeomans, Phys. Rev. B 40:666 (1989).

    Google Scholar 

  7. J. O. Indekeu and J. M. J. van Leeuwen, Phys. Rev. Lett. 75:1618 (1995); Physica C 251:290 (1995).

    Google Scholar 

  8. See, e.g., P.-G. de Gennes, J. Phys. Lett. (France) 42:L377 (1981); for background, see, e.g., B. V. Derjaguin, N. V. Churaev, and V. M. Muller, in Surface Forces, J. A. Kitchener, ed. (Consultants Bureau, New York, 1987).

    Google Scholar 

  9. P.-G. de Gennes, C.R. Acad. Sc. Paris 297:II-9 (1983).

    Google Scholar 

  10. M. P. Nightingale, W. F. Saam, and M. Schick, Phys. Rev. Lett. 51:1275 (1983); Phys. Rev. B 30:3830 (1984).

    Google Scholar 

  11. R. Lipowsky, Phys. Rev. Lett. 52:1429 (1984); Z. Physik B 55:345 (1984); R. Lipowsky and D. M. Kroll, Phys. Rev. Lett. 52:2303 (1984).

    Google Scholar 

  12. V. Privman, J. Chem. Phys. 81:2463 (1984).

    Google Scholar 

  13. S. Dietrich and M. Schick, Phys. Rev. B 31:4718 (1985); Phys. Rev. B 33:4952 (1986).

    Google Scholar 

  14. C. Ebner, W. F. Saam, and A. K. Sen, Phys. Rev. B 31:6134 (1985); Phys. Rev. B 32:1558 (1985).

    Google Scholar 

  15. M. P. Nightingale and J. O. Indekeu, Phys. Rev. B 32:3364 (1985).

    Google Scholar 

  16. C. Ebner and W. F. Saam, Phys. Rev. Lett. 58:587 (1987); Phys. Rev. B 35:1822 (1987); 37:5252 (1988).

    Google Scholar 

  17. H. Nakanishi and M. E. Fisher, Phys. Rev. Lett. 49:1565 (1982).

    Google Scholar 

  18. S. Dietrich and M. Napiorkowski, Phys. Rev. A 43:1861 (1991).

    Google Scholar 

  19. J. S. Rowlinson and B. Widom, Molecular Theory of Capillarity, (Clarendon Press, Oxford, 1984), Chap. 3.

    Google Scholar 

  20. P.-G. de Gennes, Rev. Mod. Phys. 57:827 (1985).

    Google Scholar 

  21. D. E. Sullivan and M. M. Telo da Gama, in Fluid Interfacial Phenomena, C. A. Croxton, ed. (Wiley, Chichester, 1986), Chap. 2.

    Google Scholar 

  22. J. O. Indekeu, Europhys. Lett. 10:165 (1989); G. Langie and J. O. Indekeu, J. Phys. Cond. Matt. 3:9797 (1991); W. F. Saam and V. B. Shenoy, J. Low Temp. Phys. 101:225 (1995).

    Google Scholar 

  23. M. E. Fisher and A. Jin, Phys. Rev. B 44:1430 (1991); A. Jin and M. E. Fisher, Phys. Rev. B 47:7365 (1993).

    Google Scholar 

  24. R. Lipowsky, D. Kroll, and R. K. P. Zia, Phys. Rev. B 27:4499 (1983); E. Brézin, B. I. Halperin, and S. Leibler, Phys. Rev. Lett. 50:1387 (1983).

    Google Scholar 

  25. R. Blossey, Int. J. Mod. Phys. 9:3489 (1995); D. Bonn and J. O. Indekeu, Phys. Rev. Lett. 74:3844 (1995).

    Google Scholar 

  26. A. O. Parry, J. Phys. A 26:L667 (1993); A. O. Parry and C. J. Boulter, Mol. Phys. 87:501 (1996).

    Google Scholar 

  27. C. J. Boulter and J. O. Indekeu, Phys. Rev. E 56:5734 (1997).

    Google Scholar 

  28. D. W. Jordan and P. Smith, Nonlinear Ordinary Differential Equations (Clarendon, Oxford, 1987), Chap. 1.

    Google Scholar 

  29. Surface spinodal phenomena are addressed in D. Bonn, H. Kellay and J. Meunier, Phys. Rev. Lett. 73:3560 (1994); for a tutorial see J. O. Indekeu and D. Bonn, J. Mol. Liq. 71:163 (1997).

    Google Scholar 

  30. K. Ragil, Ph.D. Thesis, Université Pierre et Marie Curie, Paris VI (1996).

    Google Scholar 

  31. For a recent detailed study of wetting on curved surfaces, see T. Bieker and S. Dietrich, Physica A 252:85 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Indekeu, J.O., Ragil, K., Bonn, D. et al. Wetting of Alkanes on Water from a Cahn-Type Theory: Effects of Long-Range Forces. Journal of Statistical Physics 95, 1009–1043 (1999). https://doi.org/10.1023/A:1004558618646

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004558618646

Navigation