Skip to main content
Log in

On Relativistic Collisional Invariants

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Two simple proofs of the result that a relativistic summational invariant ψ is a linear combination of the momentum four-vector p α are given by assuming that ψ is a continuous and differentiable function of class C 2. The results can be extended to the case when ψ is just assumed to be a generalized function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. L. Boltzmann, Über das Wärmegleichgewicht von Gasen, auf welche äussere Kräfte wirken, Sitzungsber. Akad. Wiss. Wien 72:427–457 (1875).

    Google Scholar 

  2. L. Boltzmann, Über die Aufstellung und Integration der Gleichungen, welche die Molekularbewegungen in Gasen bestimmen, Sitzungsber. Akad. Wiss. Wien 74:503–552 (1876).

    Google Scholar 

  3. T. H. Gronwell, A functional equation in kinetic theory of gases, Ann. Math. (2) 17:1–4 (1915).

    Google Scholar 

  4. T. H. Gronwall, Sur une équation fonctionelle dans la théorie cinétique des gaz, C. R. Acad. Sci. Paris 162:415–418 (1916).

    Google Scholar 

  5. H. Grad, On the kinetic theory of rarefied gases, Commun. Pure Appl. Math. 2:331–407 (1949).

    Google Scholar 

  6. T. Carleman, Problèmes mathématiques dans la théorie cinétique des gaz (Almqvist & Wiksells, Uppsala, 1957).

    Google Scholar 

  7. J. Hurley, Equilibrium solution of the Boltzmann equation, Am. J. Phys. 33:242–243 (1965).

    Google Scholar 

  8. L. Arkeryd, On the Boltzmann equation. Part II: The full initial value problem, Arch. Rat. Mech. Anal. 45:17–34 (1972).

    Google Scholar 

  9. C. Truesdell and R. G. Muncaster, Fundamentals of Maxwell's kinetic theory of a simple monatomic gas (Academic Press, New York, 1980).

    Google Scholar 

  10. C. Cercignani, Are there more than five linearly-independent collision invariants for the Boltzmann equation? J. Stat. Phys. 58:817–823 (1990).

    Google Scholar 

  11. L. Arkeryd and C. Cercignani, On a functional equation arising in the kinetic theory of gases, Rend. Mat. Acc. Lincei s. 9 11:139–149 (1990).

    Google Scholar 

  12. B. Wennberg, On an entropy dissipation inequality for the Boltzmann equation, C. R. A. S. (Paris) 315(I):1441–1446 (1992).

    Google Scholar 

  13. N. A. Chernikov, Equilibrium distribution of the relativistic gas, Acta Phys. Polon. 26:1069–1092 (1964).

    Google Scholar 

  14. K. Bichteler, Bemerkungen über relativistische Stoβinvarianten, Z. Physik 182:521–523 (1965).

    Google Scholar 

  15. R. H. Boyer, Some uses of hyperbolic velocity space, Am. J. Phys. 33:910–916 (1965).

    Google Scholar 

  16. C. Marle, Sur l'établissement des équations de l'hydrodynamique des fluides relativistiques dissipatifs I.––L'équation de Boltzmann relativiste, Ann. Inst. Henri Poincaré 10:67–126 (1969).

    Google Scholar 

  17. J. Ehlers, General relativity and kinetic theory, in Proceedings of the International School of Physics, Enrico Fermi, Course 47, R. K. Sachs, ed. (Academic Press, New York, 1971), pp. 1–70.

    Google Scholar 

  18. J. J. Dijkstra, Mathematical aspects of relativistic kinetic theory II. The summational invariants, Proc. Kon. Ned. Akad. Wetensch. 81B:265–289 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cercignani, C., Kremer, G.M. On Relativistic Collisional Invariants. Journal of Statistical Physics 96, 439–445 (1999). https://doi.org/10.1023/A:1004545104959

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004545104959

Navigation