Skip to main content
Log in

Classical Lattice-Gas Models of Quasicrystals

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

One of the fundamental problems of quasicrystals is to understand their occurrence in microscopic models of interacting particles. We review here recent attempts to construct stable quasicrystalline phases. In particular, we compare two recently constructed classical lattice-gas models with translation-invariant interactions and without periodic ground-state configurations. The models are based on nonperiodic tilings of the plane by square-like tiles. In the first model, all interactions can be minimized simultaneously. The second model is frustrated; its nonperiodic ground state can arise only by the minimization of the energy of competing interactions. We put forward some hypotheses concerning stabilities of nonperiodic ground states. In particular, we introduce two criteria, the so-called strict boundary conditions, and prove their equivalence to the zero-temperature stability of ground states against small perturbations of potentials of interacting particles. We discuss the relevance of these conditions for the low-temperature stability, i.e., for the existence of thermodynamically stable nonperiodic equilibrium states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. Schechtman, I. Blech, D. Gratias, and J. W. Cahn, Metallic phase with long-range orientational order and no translational symmetry, Phys. Rev. Lett. 53:1951 (1984).

    Google Scholar 

  2. C. L. Henley, Random tiling models, in Quasicrystals: The State of the Art, P. J. Steinhardt and D. P. DiVincenzo, eds. (World Scientific, Singapore, 1992).

    Google Scholar 

  3. R. M. Robinson, Undecidability and nonperiodicity for tilings of the plane, Invent. Math. 12:177 (1971).

    Google Scholar 

  4. B. Grünbaum and G. C. Shephard, Tilings and Patterns (Freeman, New York, 1986).

    Google Scholar 

  5. R. Penrose, The role of aesthetics in pure and applied mathematical research, Bull. Inst. Math. Applications 10:266 (1974).

    Google Scholar 

  6. C. Radin, Tiling, periodicity, and crystals, J. Math. Phys. 26:1342 (1985).

    Google Scholar 

  7. C. Radin, Crystals and quasicrystals: a lattice gas model, Phys. Lett. A 114:381 (1986).

    Google Scholar 

  8. J. Miekisz and C. Radin, The unstable chemical structure of the quasicrystalline alloys, Phys. Lett. A 119:133 (1986).

    Google Scholar 

  9. J. Miekisz, Many phases in systems without periodic ground states, Commun. Math. Phys. 107:577 (1986).

    Google Scholar 

  10. C. Radin, Low temperature and the origin of crystalline symmetry, Int. J. Mod. Phys. B 1:L157 (1987).

    Google Scholar 

  11. J. Miekisz, Classical lattice gas model with a unique nondegenerate but unstable periodic ground state configuration, Commun. Math. Phys. 111:533 (1987).

    Google Scholar 

  12. J. Miekisz, A microscopic model with quasicrystalline properties, J. Stat. Phys. 58:1137 (1990).

    Google Scholar 

  13. C. Radin, Disordered ground states of classical lattice models, Rev. Math. Phys. 3:125 (1991).

    Google Scholar 

  14. J. Mieisz, A global minimum of energy is not always a sum of local minima—a note on frustration, J. Stat. Phys. 71:425 (1993).

    Google Scholar 

  15. J. Miekisz, Quasicrystals—Microscopic Models of Nonperiodic Structures (Leuven Lecture Notes in Mathematical and Theoretical Physics, Vol. 5, Leuven University Press, 1993).

  16. J. Mieekisz, Stable quasicrystalline ground states, J. Stat. Phys. 88:691 (1997).

    Google Scholar 

  17. J. Miekisz, An ultimate frustration in classical lattice-gas models, J. Stat. Phys. 90:285 (1998).

    Google Scholar 

  18. J. Hubbard, Generalized Wigner lattices in one-dimension and some applications to tetracyanoquinodimethane (TCNQ) salts, Phys. Rev. B 17:494 (1978).

    Google Scholar 

  19. P. Bak and R. Bruinsma, One-dimensional Ising model and the complete devil's staircase, Phys. Rev. Lett. 49:249 (1982).

    Google Scholar 

  20. S. Aubry, Exact models with a complete devil's staircase, J. Phys. C 16:2497 (1983).

    Google Scholar 

  21. H.-C. Jeong and P. J. Steinhardt, Cluster approach for quasicrystals, Phys. Rev. Lett. 73:1943 (1994).

    Google Scholar 

  22. P. J. Steinhardt and H.-C. Jeong, A simpler approach to Penrose tiling with implications for quasicrystal formation, Nature 387:431 (1996).

    Google Scholar 

  23. H.-C. Jeong and P. J. Steinhardt, Constructing Penrose-like tilings from a single prototile and the implications for quasicrystals, Phys. Rev. B 55:3520 (1997).

    Google Scholar 

  24. F. Gähler and H.-C. Jeong, Quasicrystalline ground states without matching rules, J. Phys. A: Math. Gen. 28:1807 (1995).

    Google Scholar 

  25. K. Gawedzki, R. Kotecký, and A. Kupiainen, Coarse-graining approach to first-order phase transitions, J. Stat. Phys. 47:701 (1987).

    Google Scholar 

  26. S. A. Pirogov and Y. G. Sinair, Phase diagrams of classical lattice systems I, Theor. Math. Phys. 25:1185 (1975).

    Google Scholar 

  27. S. A. Pirogov and Y. G. Sinai, Phase diagrams of classical lattice systems II, Theor. Math. Phys. 26:39 (1976).

    Google Scholar 

  28. Y. G. Sinai, Theory of Phase Transitions: Rigorous Results (Pergamon, Oxford, 1982).

    Google Scholar 

  29. F. Koukiou, D. Petritis, and M. Zahradník, Low temperature phase transitions on quasiperiodic lattices, in Cellular Automata and Cooperative Systems, Proceedings of the NATO Advanced Institute, Les Houches, France, June 22–July 2, 1992 (Dordrecht, Kluwer Academic Publishers, 1993).

    Google Scholar 

  30. P. A. Kalugin, Phason disorder in 2D quasicrystals, JETP Lett. 49 (1989).

  31. K. J. Strandburg and P. R. Dressel, Thermodynamic behavior of a Penrose-tiling quasicrystal, Phys. Rev. B 41:2469 (1990).

    Google Scholar 

  32. L. H. Tang and M. V. Jarić, Equilibrium quasicrystal phase of a Penrose tiling model, Phys. Rev. B 41:4524 (1990).

    Google Scholar 

  33. H.-C. Jeong and P. J. Steinhardt, Finite temperature elasticity phase transition in decagonal quasicrystals, Phys. Rev. B 48:9394 (1993).

    Google Scholar 

  34. T. Dotera and P. J. Steinhardt, Ising-like transition and phason unlocking in icosahedral quasicrystals, Phys. Rev. Lett. 72:1670 (1994).

    Google Scholar 

  35. A. C. D. van Enter and J. Miekisz, Breaking of periodicity at positive temperatures, Commun. Math. Phys. 134:647 (1990).

    Google Scholar 

  36. A. C. D. van Enter and B Zegarliński, Non-periodic long-range order for one-dimensional pair interactions, J. Phys. A: Math. Gen. 30:501 (1997).

    Google Scholar 

  37. A. C. D. van Enter, J. Miekisz, and M. Zahradník, Nonperiodic long-range order for fast-decaying interactions at positive temperatures, J. Stat. Phys. 90:1441 (1998).

    Google Scholar 

  38. R. L. Dobrushin and S. B. Shlosman, The problem of translation invariance of Gibbs states at low temperatures, Sov. Sci. Rev. C 5:53 (1985).

    Google Scholar 

  39. M. Aizenman, Translation invariance and instability of phase coexistence in the two-dimensional Ising model, Common. Math. Phys. 73:83 (1980).

    Google Scholar 

  40. Y. Higuchi, On the absence of non-translation-invariant Gibbs states for the two-dimensional Ising model, in Random Fields (Coll. Math. Soc. J. Bolyai, No. 27), Fritz, Lebowitz, Szasz, eds. (1981).

  41. J. Slawny, Low temperature properties of classical lattice systems: Phase transitions and phase diagrams, in Phase Transitions and Critical Phenomena, C. Domb and J. L. Lebowitz, eds. (Academic Press, London, 1987), Vol. 11.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mi¸ekisz, J. Classical Lattice-Gas Models of Quasicrystals. Journal of Statistical Physics 95, 835–850 (1999). https://doi.org/10.1023/A:1004542115011

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004542115011

Navigation