Skip to main content
Log in

Stationary Scattering Theory for a Charged Particles Transport Problem

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider a nonautonomous transport problem, the modelization of the charge exchange dynamics in a monoatomic ionized gas, and apply scattering theory to its dynamics. The free dynamics corresponds to the evolution of the total distribution of particles (neutral plus ionized particles) and the perturbed dynamics corresponds to the evolution of the neutral particles, which is the solution of a nonautonomous transport problem. The existence of the time-dependent wave operators was proved by the first author. In the present paper we follow Howland's formalism in constructing a stationary scattering theory for this nonautonomous transport problem by studying the evolution equation. We prove the existence of the wave operators and by using the smooth perturbation technique we obtain the similarity between perturbed and unperturbed operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. Arianfar and H. Emamirad, Relationship between scattering and albedo operators in linear transport theory, Transport Theory Statist. Phys. 23:517–531 (1994).

    Google Scholar 

  2. G. Busoni, Asymptotic behaviour and wave operators in charge exchange, J. Math. Anal. Appl. 212:190–208 (1997).

    Google Scholar 

  3. G. Busoni, Remarks on stability in charge exchange dynamics in a monoatomic ionized gas, Transport Theory Statist. Phys. 17:257–269 (1988).

    Google Scholar 

  4. P. L. Butzer and H. Berens, Semi-Groups of Operators and Approximation (Springer-Verlag, Berlin, New York, 1967).

    Google Scholar 

  5. E. B. Davies, One Parameter Semigroups (Acad. Press, London, New York, 1980).

    Google Scholar 

  6. H. Emamirad, On the Lax and Phillips scattering theory for transport equation, J. Funct. Analysis 62:503–528 (1985).

    Google Scholar 

  7. H. Emamirad, Scattering theory for linearized Boltzmann equation: Survey and new results, Transport Theory Statist. Phys. 16:503–528 (1987).

    Google Scholar 

  8. H. Emamirad, Hypercyclicity in the scattering theory for linear transport equation, Trans. Amer. Math. Soc. 350:3707–3716 (1998).

    Google Scholar 

  9. H. Emamirad and V. Protopopescu, Relationship between the albedo and scattering operators for the Boltzmann equation with semi-transparent boundary conditions, Math. Meth. Appl. Sc. 19:1–13 (1996).

    Google Scholar 

  10. D. E. Evans, Time dependent perturbations and scattering of strongly continuous groups on Banach spaces, Math. Ann. 221:275–290 (1976).

    Google Scholar 

  11. J. Goldstein, Semigroups of Linear Operators and Applications (Oxford University Press, New York, 1985).

    Google Scholar 

  12. J. Hejtmanek, Scattering theory of the linear Boltzmann operator, Comm. Math. Phys. 43:109–120 (1975).

    Google Scholar 

  13. J. S. Howland, Stationary scattering theory for time-dependent Hamiltonians, Math. Ann. 207:315–335 (1974).

    Google Scholar 

  14. V. A. Golant, A. P. Zilinskii, and I. E. Saharov, Foundations of Plasma Physics (Nauka, Moskow, 1983).

    Google Scholar 

  15. Y. Latushkin and S. Montgomery-Smith, Lyapunov theorems for Banach spaces, Bull. Amer. Math. Soc. 31:44–49 (1994).

    Google Scholar 

  16. M. Mokhtar-Kharroubi, Limiting absorption principles and wave operators on L 1(μ) spaces. Application to transport theory, J. Funct. Anal. 115:119–145 (1993).

    Google Scholar 

  17. R. Nagel, Semigroup methods for nonautonomous Cauchy problems, Evolution Equations, G. Ferreyra et al., eds. (Marcel Dekker, 1995), pp. 301–316.

  18. H. Neihardt, On abstract linear evolution equations I, Math. Nachr. 103:283–293 (1981).

    Google Scholar 

  19. G. Nickel, Evolution semigroups solving nonautonomous Cauchy problems, Tübinger Berichte zur Funktionanalysis 5:316–334 (1996).

    Google Scholar 

  20. L. Paquet, Semigroupes généralisés et équations d'évolution, Séminaire de thvorie du Potentiel Paris, Lecture Notes in Math. 713 (Springer-Verlag, 1979), pp. 243–263.

    Google Scholar 

  21. A. Pazy, Semigroups of Linear Operators and Application to Partial Differential Equations (Springer-Verlag, New York, Berlin, 1983).

    Google Scholar 

  22. V. Protopopescu, On the scattering matrix for the linear Boltzmann equation, Rev. Roum. Phys. 21:991–994 (1976).

    Google Scholar 

  23. R. Rau, Hyperbolic evolution groups and exponentially dichotomic evolution families, J. Dyn. Diff. Eqs. 6:335–350 (1994).

    Google Scholar 

  24. F. Räbiger, R. Rhandi, and R. Schnaubelt, Perturbation and an abstract characterization of evolution semigroups, J. Math. Anal. Appl. 198:516–533 (1996).

    Google Scholar 

  25. F. Räbiger, R. Rhandi, and R. Schnaubelt, Nonautonomous Miyadera perturbations, Ulmer Seminare, Funktionalanalysis und Differentialgleichungen 1:331–357 (1996).

    Google Scholar 

  26. F. Räbiger and R. Schnaubelt, The spectral mapping theorem for evolution semi-groups on spaces of vector-valued functions, Semigroup Forum 52:225–239 (1996).

    Google Scholar 

  27. F. Räbiger and R. Schnaubelt, A spectral characterization of exponentially dichotomic and hyperbolic evolution families, Tübinger Berichte zur Funktion-analysis 3:222–234 (1994).

    Google Scholar 

  28. B. Simon, Existence of the scattering matrix for the linearized Boltzmann equation, Comm. Math. Phys. 41:99–108 (1975).

    Google Scholar 

  29. P. Stefanov, Spectral and scattering theory for the linear Boltzmann equation in the exterieur domain, Math. Nachr. 137:63–77 (1988).

    Google Scholar 

  30. H. Tanabe, Equations of Evolution (Pitman, London, 1979).

    Google Scholar 

  31. T. Umeda, Scattering and spectral theory for the linear Boltzmann equation, J. Math. Kyoto Univ. 24:205–218 (1984).

    Google Scholar 

  32. T. Umeda, Smooth perturbation in ordered Banach spaces and similarity for the linear transport operators, J. Math. Soc. Japan 38:617–625 (1986).

    Google Scholar 

  33. J. Voigt, On the existence of the scattering operators for the linear Boltzmann equation, J. Math. Anal. Appl. 58:541–558 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Busoni, G., Emamirad, H. Stationary Scattering Theory for a Charged Particles Transport Problem. Journal of Statistical Physics 96, 377–401 (1999). https://doi.org/10.1023/A:1004536803141

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004536803141

Navigation